
y/
REPORT DOCUMENTATION PAGE oMB No. o7o4- 168

1."a-C ec q zu eO no Z"=& Q('t- C 4 .SRZ Zea I ?V %, .OW - c r4 U cX LX~ 11L A'wG &&-'qwr w-Ll ;.9 21 f4J rn

for rIOUorl's rre ' 10 Waxwqw~n oeacc~wn l a w, 0k% mX!a Wa ' w orrun, C0e0~cm an'd Aoni. 215 -'e0oso CJv A. . Skl &, Ia 4. AinV. .A A3C aj
0Id -4I Mc~fE o A r P&qAUrV AtfIa -,-<a of VVAtt AMi Su*W8~do. 'NM~r'stW. DC 2C5CM

1. AGENCY USE ONLY (LawW 61atwj 2. REPORT DATE 3. REPKRT TYPE ANn OATES COVERED

August 14, 1990 Final
4 " TfTLE AN SUBTITLE S. FUNDING N' DRT IC
A User-Friendly Graphics Toolkit for Network Management

0 PR
00f ELECTE

6. AUTHOR(S) AUG22 90
N CPT James P. Hogle "

7. PERFCRMING CRGANIZATfCN NAME S) ANO A00RESS(ES) 8. PERFORMING ZPGANIZATICNd

U.S. Army Student Detachment, With duty at University of REPORT WkiLKA

Washington, Seattle Washington 98195.

. SP0ONSCjHG. MONIT QRING AGENCY NAMES)AN AOORESS(ES) .0. SPONSPNGCdITCR;NG AGE'.CY

U.S. Army PERSCOM (DAPC.OPB-D) REPORT NUMER

200 Stovall St -

Alexandria Va 22332

11. SUPPLE.MENTA.Y NOTES

Source Code for this toolkit is available on request from Professor Hellmut Golde
University of Washington Department of Computer Science and Engineering
It is also available by email from golde@june.cs.washington.edu.

i2a. DIST RIEJUT. :C&AVA;LASILiTY STATEMENT .2b. DISTRIBUTION COLE

Unclassified, Unlimited Distribution.

13. ABSTRACT /.U.rru 2C0 "v-d$)

> This thesis describes the Network Graphics Toolkit, which was developed to
simplifythe creation of graphical network management applications. It was developedl
using the X11R4 release of the Athena Widget Set and the X Toolkit Intrinsics. It
also includes calls to X Library functions when necessary. It was designed to work
with a broad range of network management applications and implemented with the
graphics code kept distinct from the application's code to improve portability. The
toolkit's features and limitations are described in detail. The thesis also
evaluates a number of graphical programs, assessing the appropriate capabilities
for a graphics toolkit. Finally it discusses the suitability of the Athena Widgets
for large graphigal applications, and related applications that have implemented
the toolkit. SHo 5AI4M

} / __ _ _ __-_ _ _

IAp~ocad ko pubc mbum

14. SUBjECT TERMS -- I IS. NUMBER OF PAGES

X Windows, Workstations, NetWork Management, Athena Widget Set g2
16. PRICE COOE

7. SECUP fY CLASSIFICATION te. SECURITY CLASSIFICATION ;. C URITY CLASSIFICATION 20. UMITATION OF ABSTRACTOF ' ,O, UI~ C 'ISS AG I OF ABSTRACT

'EMSIFIED TULAMfIED UNCLASSIFIED UNLIMITED

N 1S4S-01-2a0-5a
W ' a Fo -m 36. a 8922 Or

sa
75OOi2O5SO ,I6 by ANSI 1hd. 23IS 1

p

A User-Friendly Graphics Toolkit For Network Management

by

James Phillip Hogle

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

University of Washington

1990

Approved by - / ~ 'j(c
HellmutGolde

(Chairperson of the Supervisory Committee)

Program Authorized
to Offer Degree- t /_ 4 -f~ L- V

Date A_-,/ £ ,i i /f'?"

90 O8 8 0 13a

Master's Thesis

In presenting this thesis in partial fulfillment of the requirements for a Master's degree
at the University of Washington, I agre-- that the Library shall make its copies freely
available for inspection. I further agree that copying of this thesis is allowable only for
scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law.
Any other reprcduction for any purposes or by any means shall not be allowed without
my written pernuission.

Signature

Date 4 t-/g

Table of Contents

Page

L ist of F igu res ... iv

C hapter 1: Introduction ... 1
B ackgroun d ... 1
O b jectives .. 4
R eader B ackground ... 5
Su m m ary ... 5

Chapter 2: Graphical Programs in Network Management 7
TW M W indow M anager .. 8
M IT N etwork Sim ulator .. 10
NYSERNet's Xmon Application .. 12
The Athena W idget Examples Directory ... 13

Applications Development Environments ... 16

Graphical User Interface Builders .. 17
Sum m ary .. 18

Chapter 3: An Evaluation of the Athena Widget Set 20
T he W idget Source Code .. 21
The Widget Hierarchy and Required Functions 22

E vent M anagem ent .. 24
R esource V ariables ... 25
Fallback R esources ... 26
C allbacks .. 27
The Translation Table and Action Table ... 28

W orking W ith the X lib .. 29
T he X m u U tilities Library ... 30
S u b classin g .. 3 1
S u m m ary .. 32

Chapter 4: Discussion of the Project .. 34
T he G raph Editor 38
T he M enu Interface .. 43

T he T ext Interface ... 46
T he F ile Interface .. 46

The Data Structure and Naming Conventions 48
U sing the T oolkit .. 50

The Suitability of the W idgets ... 51

Su m m ary .. 53

Chapter 5 Continuing Work and Related Applications 54

UW Dynam ic Network M anager .. 54
T racerou te ... 55
Separating the Graphics From the Application 56

S u m m ary .. 57

Chapter 6 Discussion of Future W ork ... 58
Using the Toolkit for Other Types of Applications 58
Further Refinements With the Athena Widgets 59
C on clu sion ... 6 1

B ibliography ... 63

Appendix A The Communications Interface .. 67
Appendix B MAN Pages For The Application 71
Appendix C Summary of the W idget Set ... 82

Appendix D Examples of The Toolkit's Graphics 86

Aoession For

N T i S CG-RA&I'
DTIC TAB 0
Uuaanounced 13
Just ificatio

By

Distribution!

Availability Codes

1 vaii and/or

Dist Speolal

List Of Figures

Figure 1 Applications Development Toolkits 2

Figure 2 NYSERNet Xmon Graphics ... 13

Figure 3 Widget Hierarchy for the Graphics Toolkit 36

Figure 4 Initial Graphics Produced by a Call to the Toolkit 37

iv

Chapter 1
Introduction

In 1984, Apple Computer released the Macintosh personal computer. This small com-

puter pioneered a new type of interface for the computer user. With the Macintosh, the

use of a mouse as an input device was popularized, with menus and icons allowing the user

to move from application to application. This concept of the smooth, easy to understand

interface has since been a design goal of many major applications. A graphical interface

is ideal for Network Management applications because computer networks are hard to

visualize if the manager is given only a list of nodes and their connections. A graphical

display of network connectivity is almost mandatory. Today, Network Management ap-

plications are hard to write because the programmer must use the X Library [1] or some

other graphical Applications Development Environment (ADE) to display the program's

output and take input from the user.

This thesis introduces a method for programmers in the Network Management field

to write high-quality applications without having to learn an ADE. I have developed a

toolkit that uses the Athena Widgets [2] to provide a graphical interface including a simple

communications protocol.

1.1 Background

In the early 1980's, the Massachusetts Institute of Technology (MIT) began to develop

2

a set of protocols called X Windows, or simply X [3]. These protocols were implemented

with the X Library functions . X gave programmers a means of controlling a bitmap screen

to do graphics on workstations. It has since become a standard for many workstations.

Three ADEs are compatible with X, OpenLook,[4] Motif, [5] and the Athena Widget Set.

OpenLook uses functions from the X Library or X lib as the base for its functions. The

Athena Widgets and Motif are based on routines from the X Toolkit Intrinsics[6] as well

as the X Library. The relationships for these three ADEs are shown below.

A otif I

Widgets JOpeniLook
X Toolkit Intrinsics

X lib

Figure 1: Applications Development Toolkits

Writing graphical applications by using direct calls to the X Library typically requires

much more work than the use of ADEs. It consists of a large number of routines that

manipulate several complicated data structures. Applications with many calls to the X

Library require many global structures and variables to pass data around. This makes

the application's design more complicated and the maintenance of the code much harder.

I studied a number of X Library based graphical applications, including Tom's Window

Manager,[6] NYSERNet's Xmon,[7] and the MIT Network Simulator,[8] that all use global

data structures for the graphical portions of their programs. Most of these programs were

developed before ADEs became widely available.

3

Writing applications with the X Library requires the programmer to do a lot of work

just to get to the level from which these ADEs start. Designing the program's graphical

interface frequently puts the applications programmer at a disadvantage since graphical

design issues become very important to the ultimate success of a program. I saw, in my own

graphical interface development efforts, that users with little interest in the complexities

of the code had definite opinions about how to improve the interface (usually resulting

in a lot more work for me). Another advantage of using an ADE is that these toolkits

provide several advanced objects like Command Buttons with very good graphics.

A group at the University of Washington interested in Network Management issues

was looking for a toolkit to integrate a number of available Network Management tools

prior to developing an integrated network management system. I wanted to explore the

validity of developing a toolkit that a number of different programs could use to display

network management applications. I was limited by the lack of available commercial

Graphical User Interface (GUI) development toolkits and commercial ADEs. Available

were the Athena Widget Set and the Xt Intrinsics Toolkit which the MIT X Consortium

prur,ioted a higher level ioolkit fur X applications. The documentation describes a

Widget as, the primary tool for building a user interface or an application environment.

It is an X Window, implemented with information hiding, that uses semantics specific to

all widgets.[2]

It was a real challenge to figure out how to use the Widgets due to their scant docu-

mentation and general lack of examples. Ultimately, using the Widget Set, I developed a

very good toolkit for network management applications. In addition, the graphical inter-

face could be kept completely distinct from the code that gathers the network management

information. Keeping the graphics code separate from the application that uses it helps

make it easier to extend the code to other programs and other types of applications. Fur-

ther, the graphics code is designed to be very compatible with other types of operating

systems to aid in portability. I tried to avoid UNIX specific calls and used C language

4

input-output functions whenever possible.

This Network Graphics Toolkit can shield the application programmer from having to

learn the details of the Widgets, Intrinsics ar the X 1ib that it is bascd on, unless the

user wishes to extend the toolkit. To extend the toolkit, the graphics functions provide

a sorely needed example of how to write routines that use Xt Intrinsics primitives like

resources, translation tables and action tables. In fact, the code has examples of nearly

every major feature of the Athena Widget Set and the Xt Intrinsics Toolkits. Much of the

design of the toolkit was done concurrently with Walt Reibsig's UW Dynamic Network

Management Program [9]. The menu interface labels and file interface design was largely

influenced by his application. His SNMP based Network Management application uses the

toolkit as the graphical interface. The toolkit has also been used by another student, Scott

Murphy, to provide a graphical interface for his ICMP based Traccroute[10] application.

1.2 Objectives

My thesis has three main objectives.

" It introduces the Network Graphics Toolkit that was designed to simplify the devel-

opment of graphical Network Management applications. I will discuss the features

and limitations of this toolkit in some detail to give prospective users a feei for what

it can do for them and to suggest ways for further refinements. One sub-goal I had

for the toolkit was that it should work with a broad range of applications. A second

sub-goal was to keep the graphics code distinct from the applications code.

* It evaluates a number of graphical programs, to determine the appropriate capabil-

ities for a graphical toolkit.

" The Athena Widget Set and the Xt Intrinsics Toolkit will be discussed in some detail.

I will analyze the Athena Widget Set and the X Toolkit Intrinsics Libraries usefulneqs

5

as an Applications Development Environment. Further refinements of, or extensions

to, my toolkit require an understanding of these two libraries. This information is

provided to help reduce the challenges that a future Widget Set programmer will

face as he or she begins to develop graphical applications. This discussion will be a

gentle introduction to the X documentation and a review of other resources available.

If nothing else, the commented source code should provide a good example of what

the Widgets and the Intrinsics can do and how they do it.

1.3 Reader Background

The reader should be familiar with the C programming language to fully understand

the examples discussed. Additionally, a basic knowledge of workstation environments

and the X window system in general would aid in understanding the concepts under

discussion. A familiarity with the Unix Programmers Manual[21] sections on X and twin

are an important source of background knowledge for chapters 2 through 4. To learn

the range of possible applications that fall under Network Management the NOC Tools

Catalog[22] is an important listing of available applications in network management.

1.4 Summary

The remainder of this thesis focuses on the objectives presented in this chapter.

Chapter 2 outlines the challenge of Network Management and examines several graph-

ics programs and their capabilities that can be used as part of a graphical network man-

agement interface. It includes an analysis of several graphics programs written both with

and without the benefits of an ADE.

Chapter 3 provides a tutorial to help future users of the X-Athena Widget Set deal with

6

its peculiarities. I detail key concepts in the widget set, advantages of the widget set over

simply using X Library routines and then discuss the Utilities Library,[10] introduced wit li

X11R4, the latest release of X, to supplement the widgets. I cite examples of important

concepts behind the Intrinsics and Widgets and briefly discuss subclassing widgets to

change their behavior.

Chapter 4 provides details of the Network Graphics Toolkit, breaking it down into

functional components. It will include a discussion of how to use it, and how it was

implemented. Some of the more unusual aspects of its implementation will also be covered.

It will also assess the suitability of the Athena Widget Set and the X Toolkit Intrinsics as

an ADE.

Chapter 5 discusses recent efforts by other application writers to use my interface for

their non-graphical network management applications. It also puts my project into larger

perspective as a general purpose graph editor, and as an example of a large X-Athena

Widget application.

Finally, chapter 6 provides ideas for future work using the toolkit as a base. Possible

applications exist outside of the Network Management area, including a generalized graph

editor for applications that require one or as the front end graphics for an event driven

simulator. A few enhancements to the toolkit will also be discussed.

Chapter 2
Graphical Programs in Network Management

Network Management is an area that is well-suited for graphical applications. A net-

work, once it is installed in an organization, quickly becomes essential to the organization.

Networks typically provide services like mail, file sharing, and improved access to avail-

able information and to CPU resources. The down-side of this dependence on networks

becomes visible only when the network goes down or when information is lost or delayed.

Even if the network only breaks occasionally, network failure can be devastating for the

organization and for the network administrator. Avoiding this trauma makes Network

Management a serious issue for most organizations.

Networks are inherently hard to monitor because they have so many possible points

of failure. Failure can take place at any router or any host and can occur in one of several

software protocols or hardware components. Failure can also occur because of a broken

connection between nodes. The load on a network is typically non-uniform, with occasional

periods of heavy loads. Additionally, certain types of networks have probabilistic features

like Ethernet's binary exponential back-off scheme, and their behaviors are not completely

predictable. Networks are dependent on very specialized hardware and very complicated

software protocols to run effectively. If buffers overflow because some node falls behind

or the line quality deteriorates, nodes that are not responsible for the problem may be

the ones detecting it. The network is also dependent on the reliability of the routers and

gateways that play critical roles in the forwarding of data to distant machines.

8

Most organizations have turned to Network Management solutions that keep the man-

agement overhead low by using well-designed reporting programs that inform human net-

work managers when management problems develop. The idea is to keep the management

staff as small as necessary to do the job. Graphical programs help these small staffs stay

on top of network management problems since they can more easily display the events

of interest with graphics. Non-graphical programs can identify network failures very well

today, but if these failures are not reported to the administrators in a clear manner the

problem may be missed. Additionally, large networks and their connections are extremely

hard to visualize without a map of some sort.

The University of Washington campus network has about twenty routers arranged into

a tree topology with many secondary links. These links further enhance the availability

of network services to all points on the network, despite the occasional loss of one or more

subnets or routers. Understanding how this network is configured from a table of routers,

hosts and links is difficult. I frequently saw network management application writers

spending hours drawing graphs from lists of routers and links trying to understand the

text output of their applications.

Most network applications using graphics completely embed the graphics into the

programs. I consider this approach to be bad, both for maintenance and flexibility of

the program. Embedding the graphics into the application dates the program and limits

its utility since better graphical ADEs continue to be developed. The remainder of this

chapter focuses or several graphical programs, some of which are network management

related, and describes how their graphics are implemented.

2.1 TWM Window Manager

One of the most important graphics programs on a workstation is the window man-

ager, and one common public domain window manager is Tom's Window Manager.t2l]

9

It is also called Tab Window Manager in the X11R4 release, or just twin. It provides

titlebars, shaped windows, multiple methods of icon management, user-defined macro

functions, click-to-type and pointer-driven input, and user specified key and mouse but-

ton bindings. The default settings can be modified using the .twmrc script file in the user's

home directory. The program is usually started when the user logs onto the system. It

defines eighty-three variables and fifty-seven functions for the user. The window manager

executable is over 226,000 bytes long and uses several megabytes of window manager spe-

cific library functions. The source code for the main program and the library functions

are over 391,000 bytes long. The program graphics were written strictly with calls to the

X Library. No calls to the X Intrinsics Toolkit or any other graphical toolkit were made.

The program is hard to understand since it is divided into twenty-six sparsely commented

C files using many X Library function calls.

The twm program provides an example of how the X Library can accomplish two

functions important to my toolkit. I first examined the source code to learn how the

program accomplished window movement. The section of the code responsible for the

movement of the windows on the screen is about 90 lines long, contained in a two-thousand

line file called events.c. It allows movement when the user clicks the left mouse button

on either the bar on top of the window or on any border of the window. It uses the X

lib function XGrabPointer to control input from the pointer while the window movement

takes place. The function XQueryPointer returns the window containing the pointer and

the coordinates of the pointer relative to the origin of that window. These functions

control the process and provide the location to the window manager data structure. This

enables the XMovelWindow function to set the window in the new location. Part of the

window movement function is a shadowing function that shows an outline of the moving

window while it is being dragged around on the screen. This feature lets the user know

exactly where the new window will be put down when he or she lifts his finger off the

button.

10

Another function of the window manager important to my toolkit was the notion of

iconifying and displaying the contents of a window. This capability is at the heart of the

window manager and was implemented with a data structure and several twm defined

functions that create and destroy windows and keep links to the files that contain the

information about the windows. This collection of functions is much more complicated

than moving the windows.

Trying to comprehend the details of the X Library as it was used in this program

prompted me to use a higher level toolkit to build my graphics. Though used frequently,

twm is one program that few users ever take the time to understand completely.

I used window movement and the concept of a popup window in my toolkit. I found

no easy way to implement window movement within the Athena Widget Set. To get

movement I used the same X lib functions as the window manager. Since twin handled

window movement as a part of a much larger window handler function I could not directly

use the function from the window manager. I did use an Athena Widget Set concept that

let me tie mouse clicks to the X lib based functions I wrote.

I implemented popup windows in my toolkit using the Athena Popup Widget. It

calls another type of widget that displays information or prompts the user for certain

data. This concept was easier to use than the iconification and display functions that

maintained information in the window manager.

2.2 The MIT Network Simulator

The MIT Network Simulator[6] is an event driven simulator that simulates and displays

nodes and links including ethernet, token ring, and point-to-point networks. It was

written in 1988 using the X Library. As a result, the source code is very long, over 550

kilobytes, and is fairly difficult to follow. Some effort was made to separate the graphics

functions from the simulation code; however the graphics code is still dispersed in about 8

11

of 30 files in the application. It is tightly bound to the simulation code; there is no way to

reimplement the simulator using an ADE without completely rewriting most of the code.

This simulator generally provides reasonable results, uses colorful graphics and is flexible

enough to simulate networks up to about 60 nodes. This limit is based more on the lack

of screen space than other limitations.

There are several graphical features of this program that are interesting to consider

when designing a network management toolkit. The mouse is used to move nodes, dnd it

is used to draw and delete lines between nodes with ease. The program includes a point

and click menu driven interface. The main menu appears in the upper right corner of the

display as a square box, leaving plenty of space for the application to display the nodes

and links being simulated. The simulator also has an area at the bottom of the display

where the user can provide text input.

The program's interface for adding links between nodes is very weak. It requires that

the user add the link between the nodes (which shows up on the screen as a line), then

add each path to the network of nodes by clicking on the nodes in the path one at a time.

Then he or she must add the return links from the destination back to the origin. There

was no sure way for the user to tell if the path was actually added to the database without

writing out the state of the application to a text file, suspending the simulator process to

look at the file. Many users simply edit the text file to add links to avoid using this run

time interface.

My toolkit borrowed several concepts from the MIT Network Simulator. I chose to

use many of the same functions for line drawing, since the Athena Widgets have no means

to draw a line. This meant that my toolkit had to define a graphics context that was a

solid black line and call the X lib routine XDrawLine, just like the simulator (see Chapter

3.8 for further details). Other functions such as the point and click menu driven interface

12

were implemented with higher level X-toolkit constructs.

2.3 NYSERNet's Xmon Application

Xmon[7] is the primary network status monitoring application in the NYSERNet

SNMP application release. It is a graphical network status monitoring and querying

program that uses the Simple Network Management Protocol[23] to get the status of var-

ious nodes specified in a configuration file. The program periodically queries the nodes

over the network and, depending on their replies, sets the background color of the nodes

to be red(down), orange(uncertain) or green(operational). It was implemented using only

X lib functions for its graphics. The University of Washington Campus Network displayed

with version 4.0 of Xmon (released in July 1989) is shown in Figure 2, albeit in black and

white.

Several aspects of the Xmon application are of interest. It uses color graphics to

indicate the node status and the network type. Network types are displayed with different

shaped lines. It uses one-line labels to name both the nodes and the connections. It also

uses a configuration file to fix the location of the nodes on the screen. The application

is bounded by the limited size of the display screen. This program is a primary tool for

network managers at the University of Washington and is widely used at other university

and corporate sites as well.

Xmon's graphics closely resemble those of my toolkit. The features that NYSERNet

implemented using X lib were implemented with the Athena Widget Set and the X Toolkit

Intrinsics in my toolkit, except for the features mentioned in the previous sections, namely

movement and line drawing. Differences in the appearance between the NYSERNet ap-

plications and my toolkit were due to the deliberate design decisions. It would not be

difficult to convert my toolkit to provide graphics identical to Xmon.

13

QoUITiBell On Status OnlLogging On intervall 0 1 1

SNMP Network Monitor Version 4.0 126 192 129 192

LeedCopyright NYSERNet Inc. 11111USNDr rc

--- Dow
-Up

.. onKib o r208: 176:atmos 11Is: 100:npl
*Unknown E1:iiy 4A

-ANUk 2f ly 26E

QRing 12195.1211 1211.05.1112 40:adm 216:dvictr 76:phys 243:DPH

128 18212 10 18 12 128 182

Elecrolu Dusbustr ReinaSliverking

22:1211206:1w 112:ndc 1U:PPU 79:j :%33:gug

238:e gr 16:geo 19:C net 120:nde Be: 250:0TH 143:E i4o:FTR

19:COEnat 22:amath 1: S 1s: cc 214:ChemE 226:Psrych 222:SCC 2o6:CDC

129 192

A&das 3:E246: u IS0:bIoE 60:s 36:forest

252: 0a 244taIcOM 172:c am

72:CSSCA 82:FMO 200:hacc 144:CQS 104:I1b, 16:MUslc

129 192

Ma~y 141: on 140 McCarty 90:g cc

1942: sgea 143:McKenzie 216:3 c 2:engi

90:ant 102:ougi .97...E 1-4:FIS 57:BRY 168:arch 184:HFS
112:3 0om 4M

156:8j

@-EE 236:purch

Tue Jul 24 13.47:52 lawC:: interface 2 at DirtDevi came UP

Figure 2: Xmon 4.0 Display of the University of Washington Campus Network

2.4 The Athena Widget Examiples Directory

The X11R4 Release from the MIT X Consortium includes a directory of example

14

programs implemented with the Widgets and Intrinsics libraries. These programs range

from the simple Hello World program to one called xwidgets that uses nearly every widget

in the R4 release. Again, widgets are typically associated with X Windows, have specific

capabilities as part of a user interface or application environment, and are implemented to

use information hiding. Several of these programs have very interesting features relating

to Network Management.

The most basic example is the file xhw.c, which draws a box on the screen with the

words, " Hello World" inside. It uses only four lines of source code. The example outlines

the properties of any Athena Widget based application. An article by David Rosenthal

[11] describes a program with identical output as requiring 40 lines with X lib calls. I used

Hello World as a template to develop main.c in my toolkit.

One of the examples, popup.c, allows the user to specify a color to change the command

button. Specifically, the application creates a window that says, "Press to see Simple

Popup Demonstration". When the user clicks that window a new window pops up and

asks the user, "What color should the main button be?". This new window also provides

space for the user to type in the color and "OK" and "Cancel" buttons. After the user

types in the color the second window disappears and the main button changes to that

color.

Two aspects of popup.c were important to my toolkit. First, this is the only example

with a dynamic color change. The ability to change the color of a window dynamically

is very important in a graphical Network Management application. Colors can display

the operational status of a node clearly. Second, this function allowed the user to hit the

return key after typing in the color instead of clicking the mouse button on the "OK"

window. This feature is very convenient when implementing a point and click interface

that requires the user to input text at the keyboard.

Though simpler than X lib, the widgets can still be difficult to use for simple tasks.

The popup.c example uses 39 statements from eight of the thirteen chapters and from

15

two of the five appendices in the X Toolkit Intrinsics[6] documentation. Furthermore, the

relationship between the functions are very poorly covered in the documentation. What

should be a simple task, changing the background color of a widget, is very difficult. I

used the same approach as the program to include both the color change and the return

key press in my toolkit. Without access to this example dynamically changing the colors

of the widgets would have been much harder to implement.

Another extremely valuable example was the file xmenu2.c. This file opens up a

window that says, "Click here for menu". When the user clicks the mouse button in that

window a window pops up that has a label and several possible items to select. When the

user selects one of these items the user's xterm window that started the program states

that the appropriate menu number was selected. The menu items all have different font

sizes.

The xmenu2.c program's multiple font settings and the popup menu window are sig-

nificant to a network management application. Variable font sizes allow some text to be

reduced, providing more room for the application to use. Also, the popup menu window

allows the application to nest menu windows under main menu buttons so that more menu

selections can be made without cluttering up the screen with related or infrequently used

menu buttons.

I directly used both notions in my toolkit. A small boldface font size for the nodes

makes it much easier to fit nodes on the screen. The toolkit also uses popup menu windows

since there are several related functions, such as printing information on the screen or

dumping it to a graph, that need not be given separate main level menu buttons.

This example was the only rtference available to me that covered how to specify fonts

using the X toolkit. Virtually no mention of fonts is made in the Athena Widgets or

the Intrinsics documentation. The X-Library describes some functions for low-level font

specification, but does not explain what is covered in the program. Without this example

I could not have reset the fonts the way I did. Again, the examples provided important

16

assistance that the manual did not offer.

A third example that was especially valuable was the program xwidgets.c. It offered

examples of 23 widgets in the Athena Widget Set. The program creates this collection

of widgets to show how they can be composed and provides an example of each. This

was interesting from a Network Management standpoint since it hinted at the flexibility

of the widget set and provided important examples for adding windows. The example

implemented horizontal and vertical scrollbars to allow movement around the display

space of another window. It also implemented a text window that periodically took input

from a file. Finally it implemented a histogram window called the StripChart Widget.

My toolkit used some of these concepts. Scrollbars allow it to manage displays larger

than the actual screen space. It is helpful to eliminate the limitation that the screen can

have on the size of the network that can be managed. Another concept used was the

ability to periodically read and display text information directly from a file. This allows

the application to send long messages through the toolkit to the manager, if necessary.

One concept in this example program that I did not implement was the histogram. This

could be particularly valuable for displaying certain paramet,rs for a node or set of nodes

in future updates to my toolkit.

The example programs introduce the capabilities of the Widget and Intrinsics as an

ADE. They give the application writer a feel for what is possible using this ADE. The

examples go well beyond the manual in explaining the relationship between various In-

trinsics and Widget functions. A more detailed discussion and evaluation of the Athena

Widgets will be given in Chapter 3.

2.5 Application Development Environments

A number of high-quality Application Development Toolkits have recently been devel-

oped. One Xt Intrinsics based Applications Development Environment is Motif,[8] which

17

generally provides much better graphics than other toolkits. The graphics have a three

dimensional appearance, with buttons that appear raised when " off" and depressed when

"on". This is a more sophisticated method of sending a visual signal to the user than

reversing the foreground and background color as in other toolkits. Motif is implemented

with its own widgets and has another object called the gadget. A gadget is a windowless

widget that keeps less state than conventional widgets, but provides some of the same

functions. It is designed to improve performance and require less server overhead than a

widget.

Motif's main competitor is OpenLook,[3] which is based on the X Library. OpenLook

was designed with visual design, simplicity, consistency, efficiency, device independence

and interoperability with existing systems in mind.[25] Like in Motif the user can dy-

namically change fonts. He or she can also change the background color of any window

dynamically. These changes are made by opening a property window that provides rou-

tines to change the state of the window. When the background color is reset by the user,

the foreground color of OpenLook applications may also change to insure a strong contrast

between the colors. The mouse cursor in an OpenLook application is commonly moved or

"warped" in X lib terminology, to the default button screen image. This minimizes the

amount of distance that the user will have to move the mouse.

David Simpson[14] notes that OpenLook and Motif are conceptually very similar and

believes that programmers can easily learn the other if they already know one. Neither of

these programs were available to me. It is possible to reimplement my Graphics Toolkit

with one of these Toolkits to get a slightly higher quality of graphics.

2.6 Graphical User Interface Builders

A number of user interface development programs are now becoming available such

as Sun Microsystem's Graphical User Interface Design Editor (Guide).[12] The user can

18

create a graphical interface with menu buttons and input boxes to prompt the user for

certain information. He or she must still write the callback routines required by each of

the menu buttons. These callback routines can get fairly complicated, but the overall

savings in development time would still be significant.

Guide and other programs in this class let the applications writer construct the inter-

face on the screen using the mouse and generate C language code. With a menu builder,

the applications programmer has the interface automatically built for his applications.

The development of my toolkit would have been simplified by a program such as Guide.

2.7 Summary

This chapter described the tuim program, the MIT Network Simulator and the NY-

SERNet application Xmon. All three of these programs were implemented using the X lib,

and provide important lessons about interface design. Twm provided an example of win-

dow movement, and windows that can be reduced to a small object, the icon. The MIT

Network Simulator provided an example for a menu interface and the display of nodes

and networks as a collection of boxes and lines. Xmon showed the utility required by

applications that monitor networks, including multiple color codes and irregularly shaped

network objects.

The Athena Widget example programs show what simple toolkit applications can

do. The functionality of many of the examples are useful to a graphics toolkit. The other

ADEs such as Motif and OpenLook, provide functionality not available in the X lib and the

Athena Widgets. Other products are now being developed that promise more streamlined

applications development.

An large amount of work is currently taking place to design and improve graphical

program interfaces. Much needs to be done before we reach a point where we can be

satisfied with these interfaces. The same is true for the quality of available Network

19

Management programs. These programs are usually written with embedded graphics

which makes them harder to maintain and extremely hard to convert as newer and better

graphics toolkits are developed.

Chapter 3
An Evaluation of the Athena Widget Set

In light of the difficulties of writing applications using X lib, the value of ADEs like the

Athena Widget Set/ X Toolkit Intrinsics is apparent. The concepts behind the Widget

Set and the Intrinsics are not difficult. They are worth reviewing even if the reader has

no intention of working with the Athena Widgets. Many of the abstractions behind the

Widget Set and the Intrinsics are common to other ADEs. Since Motif is implemented

using these same X Toolkit Intrinsics, these concepts are common to that environment as

well.

The documentation of the Athena Widget Set and the X Toolkit Intrinsics offers an

enormous amount of explanation but very few complete examples. The problem gets worse

trying to understand the meaning of all the terms used without explanation. The Widget

abstraction is meant to spare the graphics programmer from having to worry about all

the details of the X-Library. In that regard the widgets are partly successful; however it

is still extremely hard to master the Athena Widgets.

The concepts to examine are the Widget Hierarchy, Event Management, Resource

Variables, the Fallback Resources, Callbacks, and Translation Tables and Action I'ahle..

They are best examined in the context of the manual's explanation, iheir syntax, and

some examples of what these features provide for the programmer. It is also worthwhile

to explain what the Widget Set does not do and to briefly cover some of the things that

are abstracted away by the Widget set. I will conclude with a discussion of the various

21

libraries examining what they can do for the programmer and then look at subclassing

widgets.

3.1 The Widget Source Code

The Athena Widget Set documentation[2] should be consulted first by the widget

programmer. Another source of information is the source code for the widgets. Appendix

C briefly describes the function of each. The source code in the release is written in

C, and is well commented and easy to follow. It provided almost as much help as the

documentation when trying to figure out the behavior of the widgets.

The code for a widget consists of a public header file (for example, for the List Widget,

List.h), a private header file (ListP.h), and a widget source file (List.c). The key functions

in determining the behavior of the widgets rests in two files, the private header file and

the widget source file. The private header file sets up the inheritance hierarchy of the

widget. Knowing the superclass of the current widget can be significant in determining

it's behavior. The source file has a section that lists the inheritance functions and the

widget specific functions. An example from the source file for the List Widget follows:

#define superclass (&simpleClassRec)

ListClassRec listClassRec {{
/* core-class fields initialization */
/* superclass */ (WidgetClass)superclass,
/* class.name */ "List",
/* widget-size */ sizeof(ListRec),

/* realize */ XtInheritRealize,

/* Simple class fields initialization */

{ / * change~sensitive * / XtlnheritChangeSensitive

}

22

This is a class definition (listClassRec) that defines the behavior of specific instances when

the program creates a List Widget. The first 20 or so variables defined in this record are

common to all widgets. They were defined by the Core Widget in the coreClassRec. The

superclass (&simpleClassRec) is the record class in which to find functions that are not

defined in this class record. The function sizeof(ListRec) determines the amount of space

to allocate for each instance of the widget created. When the widget is "Realized" the List

Widget uses the Simple Widget's Realize function and not its own Realize function (if it

defines one) since the XtInheritRealize points to the parent widget's Realize function . All

core variables must point to defined or explicitly inherited functions in the source file of

each widget. This listClassRec must also define one more variable created by its superclass

simpleClassRec. The change-sensitive variable points to a function in the superclass, not

in the source code.

Occasionally the widgets define one or more public functions that let the widget pro-

grammer directly set one or more of the resource variables. The interface to these public

functions are defined in the public header file. The file List.h defines four public functions,

e. g.,

XawListChange(listWidg, listString, numitems, longest, resize);

This function changes the list displayed in a certain widget (in this case called listWidg).

The other parameters consist of an array, of numitems length, of strings called listString,

the length of that array, numitems, the number of characters in the longest string, longest,

and resize which tells the List Widget if it can change the length or height of the list to

accomidate this new listString. Functions like this one are provided to simplify the job of

the applications programmer. Not all widgets have these types of functions.

3.2 The Widget Hierarchy and Required Functions

One of the most important concepts that a programmer must understand is the widget

23

hierarchy. The widgets in an application are defined in a tree structure. The root of the

tree is the shell widget that is generally called toplevel. This widget is not manifested as

a window; its only purpose is to be the root of the widget tree. The Widget Set next has

several types of composite widgets that can have several widget children. These composite

widgets include the Form, Box, and Dialog and Paned widgets. The Network Graphics

Toolkit uses the first three of these composite widgets. One instance of the Form, Box or

Paned Widget typically is used as the application window. These widgets can have other

composite or simple widgets as children. Simple widgets include the Command, Label,

List, Toggle, and StripChart Widgets. Simple widgets typically do not have children.

There are also a few widgets that can have exactly one child, like the Scrollbar and

the Viewport Widgets. Appendix C briefly lists the different widgets and some of their

capabilities. X-Widget applications generally appear to be very similar since they use

many of the same widgets and attempt to reset only a few defaults. For the specific

widget hierarchy used in my toolkit see Figure 3, in Chapter 4.

There are a few functions that the Widget Programmer must understand. These

functions do some very basic things like creating and destroying widgets. Four basic

toolkit functions are used in the next example. Except for several "include statements"

and comments a copy of the file xhw.c discussed in chapter 2 follows:

String fallback-resources[] = f "*Label.Label: Hello, World", NULL };

main(argc, argv)
int argc;
char **argv;{
XtAppContext app.con;
Widget toplevel = XtAppInitialize(&app -con, "Xhw", NULL, 0,

&argc, argv, fallback-resources, NULL, 0);
(void) XtCreateManagedWidget("label", labelWidgetClass, toplevel,

NULL, 0);
Xt RealizeWidget toplevel);
XtAppMainLoop(app-con);

The XtApplnitialize function must be the first toolkit function called. It sets up a state

24

variable called the application context (app-con) and returns the shell widget (toplevel).

These variables are called by several functions throughout the life of the application.

The XtCreateManaged Widget function creates one widget in the widget hierarchy. The

XtRealize function makes the widget and all its children visible. Typically it is called

once on the shell widget only to make all of the application visible. The XtDestroy Widget

function (not shown) makes the widget and all its children disappear and frees all the

structures associated with the widget and its children. The function XtAppMainLoop is

an Event Management function and will be addressed in the next section. Familiarity

with these routines makes it easier to understand any application.

3.3 Event Management

The Xt Intrinsics Toolkit eliminates much of the complexity behind event management,

which is key to any graphical user interface program. Graphical interface applications

typically have some startup code that builds the interface before the application drops

into the main loop. The higher level interfaces generally spare the user the complexity of

writing the main loop code. This is true for the Athena Widgets since they use the Xt

Intrinsics event management functions. The function that puts the application into the

main loop is XtAppMainLoop. Generally this is the only event management function that

is used in Athena Widget based applications and it is only called once.

Events are user actions like typing at the keyboard, clicking on a button with the

mouse, or receiving input from an application program. The widget event manager auto-

matically registers and processes these events. There is no need for the program writers to

get involved in writing code that puts these events in a loop and checks them periodically.

For extremely complicated applications such as my toolkit, XtAppMainLoopis not suffi-

cient. The XtAppAdd TimeOut (app-eon, TIME-INTERVAL, namedFunction, client-data)

function is an event management function that calls the function named as a parameter

25

(namedFunction) after a designated period (TIME-INTERVAL), passing any parameters

specified in the argument list (client-data). Once this period elapses the procedure is

called and the event manager removes the time out. Just the time out and a pointer to

the routine to call go into the event manager structure. This function provides a parallel

type of event manager for the user.

An event management function that synchronously changes the event management

queue is XtAppAddlnput(app-con, inputSrc, condition, proc, client-data). This function

registers a new input source (inputSrc) with the event manager that calls the callback rou-

tine (proc) whenever the input source condition (condition) is satisfied. For my application,

this function would be a better long-term approach for process to process communica-

tion than the asynchronous approach used by XtAppAddTimeOut. It is unclear from the

documentation whether this function would permit the applications to communicate with

named variables, sockets or ports or only through the Unix file system. This approach

certainly deserves more exploration. There are a number of other procedures that can be

used for event management but as long as the widgets permit the programmer to avoid

getting involved with the details of event management, they are not significant.

3.4 Resource Variables

One concept critical to manipulating the widget is the notion of resource variables,

normally just called resources. Each widget usually has a few dozen of these variables

that are defined when the widget is created. When a widget is created its resources are

either specified by the user or the default parameters are used. The best way to specify

parameters is by using public functions defined in the widget's public header file. Since

most widgets do not have public functions, a more typical way to specify resourcess is

to build an argument list with one or more calls to the XtSetArg function. With this

function values of the correct type are assigned to the corresponding resource names.

26

Next the application must call the XtSetValues function with both the argument list and

the widget name as parameters. There are many examples of this in my code; further

discussion of this method of parameter specification is beyond the scope of this thesis.

3.5 Fallback Resources

One other important way to set resource default values is through the fallback re-

sources. These must be specified in the main Athena Widget application file for all the

widgets in the application. Some resource values like the fonts can only be specified with

this method. Here is a small part of the fallback resources for my application.

String fallback.resources[] = {
C*List.default Columns: 1",
"*List.forceColumns: True",
" *extraDialog*label.resizable: True",
"*extraDialog.value:",

}

The meaning of the text is very simple. If the first letter of the name following the ""

is capitalized, then the string that follows will apply to all the widgets of that type. If

the name following it is not capitalized, then the name refers to the one widget with that

name in the application. The information after the colon is the value to be assigned to

the resource. This is an easy way to set a large number of default values at once. The first

two lines in the above example sets two defaults that make all List widgets one column

wide and force the widgets to comply with the new default column widths. The third

and fourth lines apply to the Dialog widget that is used when the application wishes to

directly query the user for string input other than what it gets from the menu interface.

This allows that widget to take variable length input (resizable: True) and sets the initial

value visible in the text area to blank space("...value:").

One last thing to note is that not all the resources are settable by the programmer.

The manual details the names and the types of the resources for each widget and whether

27

or not they can be set.

The different methods of setting resource values use the following priority system: Ex-

plicitly set values using the function XtSetArg or a public function such as XawListChange

have a higher priority than defaults set by the falback resource list. The fallback resources

have priority over the default setting of the widgets, with the lowercase fallback resource

item having priority over the uppercase fallback resource item.

3.6 Callbacks

Callback routines are the routines that are executed in response to some user action

like a button press or a button release. Callbacks are added to widgets through one of two

methods. The first is exemplified by XtAddCallback(close, XtNcallback, Close Text Window,

NULL); This call adds the function Close Text Window to the callbackList resource of the

widget close in the file, text.c. The last parameter can contain a pointer to any structure

that the application wishes to provide to the function Close Text Window. This form is

commonly used for Command and Toggle widgets.

The method shown below is used to both create a button in a dialog box and to tie a

callback function to a button press event of that button.

XawDialogAddB utton(extraIntDialog, "Ok", HandlePromptForIntInput,
(XtPointer) extraIntDialog);

This example creates a button called Ok for the dialog widget extraIntDialog that when

pressed calls the function HandlePromptForIntInput. One important point worthy of

comment is the warning on page 99 of the X Toolkit Intrinsics documentation. Describing

the functionality of the callback interface it reads:

28

Except where otherwise noted, it is the intent that all Intrinsics
functions may be called at any time, including from within callback
procedures, action routines and event handlers.

Note
The words "it is the intent that" in the preceeding sentence
indicate that there are known bugs that remain to be addressed in
some implementations.

1

The above warning may explain those times when the callbacks did not work as expected.

The syntax for handling callbacks is fairly complicated. There are several examples

of callbacks in the examples directory and in my file, popup.c. It is the callback interface

that enables command and toggle buttons to call the routines that do the real work.

3.7 The Translation Table and Actions Table

The translation table ties keyboard or mouse events to callback routines. This enables

other widgets to be used in the same way as the command widget. I used the translations

table in several different ways.

char hostsTranslations[]
"BtnlDown: Start()
BtnlMotion: MoveHosts()

Above is a part of the translation table to provide the movement capability for the nodes

in my graph editor. The function Start is called when mouse button 1 is pressed down

inside a host widget. When the user moves the mouse on the pad while holding the first

button down the function MoveHosts is called.

The translation table management routine requires the referenced routine, (Start or

MoveHosts), to be defined in the widget source code or that of its parent in the inheritance

hierarchy. In my application I did not put any code in the widget itself, which is what

a usor would do to subclass a widget. Instead I used an Action Table. If the translation

'Joel McCormack, X Toolkit Intrinsics - C Language Interface, X Window System,

X Version 11, Release 4, 1988, r. 99, pages 207.

29

manager cannot find the function name in the widget code it will then check the Action

Table.

The Action Table provides a mechanism for user defined routines to be called from

a translation table. This makes it possible for the mouse to be used to call user defined

functions by being clicked in a window. The action table must be part of the primary

file in the application and must be added to the application in the main function. There

is normally only one Action Table per application. I register all the functions in the

translation tables in the Action Table. It is the combination of the action table and the

translation tables that make it possible for the mouse to be used effectively.

3.8 Working With the X lib

The X Library confronts the user with hundreds of functions and tens of data struc-

tures. There are times when the Widget programmer has to deal with the X Library to

do things that the widget set will not do. For example, the widget set will not allow the

user to draw lines or to dynamically reset fonts. These can only be accomplished with the

X Library.

By looking at how the X Library allows the user to draw lines, the reasons for using

the higher level functions become more clear. The function that is used for line drawing

is XDrawline(display, drawable, graphicsContext, xl, yl, x2, y2). Getting the first three

parameter values requires additional code such as shown below in the function Initialize-

Lines. The only purpose of the function in build.c is to create a graphics context called

gcfore for a solid black line. The code for this function follows:

30

GC InitializeLines(){
GC gcfore;
Display *display;
Window win;
Pixel color;
unsigned long black;
display = XtDisplay(theForm);
win = XtWindow(theForm);
black = XBlackPixel(display, 0);
gcfore XCreateGC(display, win, 0, NULL);
XSetForeground(display, gcfore, black);
XSetLineAttributes(display, gcfore, 0, LineSolid, CapButt, JoinMiter);
return(gcfore);

This function first calls two Intrinsics functions and four X Library functions before the

graphics context for drawing lines is set. The Intrinsics functions merely get the low-level

Display and Window variables from the widget theForm so they can be used by the four

X lib functions. The XBlackPixel call returns the machine specific color for a black pixel.

The XSetForeground function takes the graphics context created by XCreateGC and sets it

up according to the display parameters. The XSetLineAttributes establishes the graphics

context as a solid line (LineSolid), square at the endpoints (CapButt), whose outer edges

extend to meet connecting lines at an angle(JoinMiter).

The graphics context data structure, gcfore, consists of a 32 bit value that is set and

reset by a series of functions. It is one of the data structures eliminated by the X Toolkit.

3.9 The Xmu Utilities Library

Compilation of a typical X application using the Athena widgets requires four libraries;

the Athena Widget Set (Xaw), the Utilities Library (Xmu), the X Toolkit Intrinsics Library

(Xt), and X lib (Xl). The Utilities Library consists of a wide range of functions to give the

Widget Set additional capabilities. Many of the features of my Network Graphics toolkit

come from functions in the Utilities Library, e.g. the ability of the widgets to change

31

shapes dynamically, changing the orientation of a label, reading bitmaps for display and

handling errors.

The function XrnuReshape Widget takes as parameters the name of the widget to re-

shape, the shape style (either an ellipse, oval, rectangle or a rounded rectangle), and if its

a rounded rectangle the corner width and corner height. When this function is combined

with the List Widget resources internalWidth and internalHeight, it is possible to make

circles and squares.

There are a number of other excellent functions that can add to the graphics of an

application. The function XmuConvertStringToOrientation enables the programmer to

write subclassed widgets that display the labels vertically down the screen. The XrnuRead-

BitrnapDataFromFile function lets programmers replace labels with bitmaps. Also, the

function XmuCreateStippledPixnap lets the programmer give the backgrounds of some

widgets a different texture. The Library also provides two functions that can help with

debugging and creating production quality software. The XmuPrintDefaultErrorMessage

function allows the programmer to write more complete error messages and the function

XmuSimpleErrorHandler provides a simple error handling interface for widgets. The Util-

ities library is very important to use in fine tuning the widgets and for creating subclassed

widgets.

3.10 Subclassing

Subclassing begins with the programmer deciding what behavior is desired in the

widget and determining what widget comes closest to that behavior. That widget is

the logical choice as the parent for the new subclassed widget. The widget writers have

provided a Template widget that can be used for subclassing from the core widget. It may

be handy to use if there is no widget available that comes very close to the one that is

desired.

32

Once selected, the parent widget functions that don't fit must be rewritten for the new

widget. Any other new resource variables must be identified and functions that handle

these resource variables must be created. Then the public and private header files and the

new source file must be written. Typically few new functions need be written.

It is essential that the application writer understand the source code of the ancestor

widgets. The syntax in the files seems clumsy, especially when compared to the C++

approach to inheritance. Fortunately the widget source code is very well documented. I

would not recommend using subclassed widgets, especially if the default resource values

can be reset to provide the desired behavior. In past updates to the Athena Widget

Set, applications that used subclassed widgets would not work with the new version. For

example, in the change from Xl1R3 to XllR4 the inheritance hierarchy of nearly every

widget changed, leaving subclassed widget's inheritance structures inconsistent with their

ancestors inheritance structures. However, to get new capabilities and to use certain

functions from the Utilities Library subclassed widgets are the only way possible.

3.11 Summary

The X Athena Widgets and the Xt Intrinsics toolkit are a very powerful set of ab-

stractions for writing application programs. The widgets are objects that have functions

and resource variables associated with them. The concepts behind the Intrinsics are not

difficult. The Widget Hierarchy is relatively simple, enabling variables of the child to

be set according to the parent's values. The central functions for the toolkit are far less

numerous than those of the X lib, though their names sound more esoteric. The resources

and fallback resource lists enable application writers to customize the behavior of the wid-

gets. Finally, the callbacks, the translation table and the action table all link events like

mouse clicks to a function to be executed. Despite the difficulty of working with these

libraries they are definitely preferable to writing applications with the X Library alone

33

where colormaps, graphics contexts and a number of other concepts must be grasped to

write graphical programs.

Now that the groundwork has been laid it is time to turn to the Network Graphics

Toolkit. The next chapter will look at the toolkit, breaking it into a number of components.

The capabilities, the limitations and how it is used will all be covered. The chapter will

also include an assessment of the quality of the ADE composed of the Athena Widget Set

and the X Toolkit Intrinsics.

Chapter 4
Discussion of the Project

With the UW Network Graphics Toolkit, network management programs can be cre-

ated easily, without getting involved with the details of how the Athena Widgets or the

X Library works. This chapter introduces the toolkit, examining what the toolkit does,

how it was implemented and what is required to use it in applications. The UW Network

Graphics Toolkit has five broad components:

" The Graph Editor, which refers to that part of the application where the network

map is drawn;

" The Menu Interface includes the menu buttons and all the prompts that result when

the user clicks inside of a menu button window;

* The Text Interface, which displays information from the application program to the

user;

" the File Interface, including the communication between the application and the

toolkit process, and

" the toolkit's internal data structure and naming conventions, making it possible for

the code to be easily maintained and extended.

The first four components all play a distinct role in the way that the Graphics Toolkit

works. The data structure and naming rules play a large role in the entire application.

35

Examples of the graphics produced by the toolkit are available in Appendix D. These

examples were created using the Dynamic Network Management System[9], and also by

starting the graphics piocess and inputing commands through the file IO.output into the

graphics process. The ability to directly input commands to the graphics process makes

debugging the application easier as new capabilities are added.

The toolkit is composed of 13 files.

" main.c - This file builds the initial application window including the menu. It also

contains the fallback resources structure and the toolkit's action table.

* build.c - Routines pertaining to the graph editor's functions for movement, color

and shape are part of this file.

" build.h - This file exports the routines from build.c and establishes the data struc-

ture used to maintain the graph editor's map.

* popup.c and popup.h - The functions that are called when the user presses on a

menu item are provided and exported with these files.

" text.c and text.h - These files provide and export the functions that compose the

text interface. They also have the code foi the user-defined popup windows.

" file.c and file.h - The functions that provide and export the simple file interface are

in these files.

• userStruc.c - This file provides some convenience routines for the application writer.

They create and manage a data structure helpful for the file interface and provide

several functions that support communication with the graphics process.

" IO.input and IO.output - These files are read and written by the application process

and the toolkit process. They are accessed through functions in the file interface.

36

* X.title - The user puts the string to be displayed as the title in this file before

starting the application.

These thirteen files correspond to the components of the toolkit. The toolkit files were

arranged this way to enable the code to be more easily maintained. The C code in these

files has many comments and was written to be easy to understand.

The Network Graphics Toolkit has a very complicated inheritance structure.

to pleve 1

Shell Widget ,.

theViewport POPUP

Viewpart Widget Popup Widget

(inci 2 Scrollbars) a

oaDialog

theForm Dialog Widg t

Figu ormdTh Widget
Tolk

TsnhBox Widget Set

Iury a i abl e Sc o lb

oCommand Widget

Figuree Lb Te Widget Str atue oft e ToLi

T h i s i n h e i t a c e s r u u r e o o k T h W i g e t h S t r u c t u r e o f e o l i c e i d e e

37

widget is a Shell Widget that was created with the XtApplnitialize function. It spawns

the Viewport Widget and the Popup Widget. The Popup Widget does not appear on the

screen. It serves as the parent widget to other widgets that appear temporarily to take

input from the user. The Viewport Widget gives the application the scrollbars that are

visible on the left edge and across the top and displays the Form Widget. Figure 4 shows

the graphics produced when the toolkit is initially called.

|Load Hot File ISave Network PriLt Not ListI Logging dd Conponen 1 elete Conpcxwent I Functions Q

This is a Sample Title From X.title

Figure 4: The Initial Graphics Produced by a Call to the Toolkit

The rest of the application is displayed upon the Form Widget. Near the top of this

Widget the menuBox is positioned. Directly under the menu is the title widget. The

invisible widget is created to make the scrollbars in the Viewport Widget work correctly.

38

The List Widgets are the nodes in the Graph Editor and the AsciiText Widget provides the

text interface. The other widgets shown in Figure 3, the Command Widgets, the Toggle

Widget, the Box Widgets, and the Dialog Widgets are all part of the menu interface.

4.1 The Graph Editor

The Graph Editor does several interesting things, some of which are not natural im-

plementations for the Athena Widget Set. Some of its capabilities include its display of

address and name information, node movement, changes of shape, color, and border width

of the nodes, and drawing and deleting of lines linking the nodes together. I also will de-

scribe how the Graph Editor allows the user to scroll over and look at nodes positioned

off the screen.

Displaying Name and Address Information

The List Widget is used to display node information. The resource XtNlist for the

List widget is a pointer to a list of string pointers with the last pointer pointing to the

string "NULL". Since the List Widget uses this type of structure, I had to keep it around

for each inst-ice of the List Widget I created, for the life of the application.

Another aspect of interest relates to the fallback resources for the List Widgets in the

toolkit. Section 3.5 showed the default values set for all List Widgets. The values from

that example stack the name on top of the address. Extending my toolkit to use List

Widgets in the menu, or in some other way, may require overriding these fallback resource

declarations. There is a lot to know about the List Widget to use it well.

Locations and Movement of Nodes

Another difficult thing to do with the Athena Widgets was to place the widgets on a

larger palette and to move them around. The first challenge was the problem of overcoming

39

the Widget Set's propensity for resizing and relocating Widget children to use as little

screen space as possible. After trying several types of widgets in several different ways I

settled on the Form Widget as the palette on which to put the other Widgets.

The toolkit breaks a few rules to make the Form Widget work the intended way. The

Athena Widget Set documentation describes a phenomenon called Screen Flash, where

the widgets appear one at a time on the screen because the parent widget is made visible,

(Realized in Athena Widget terminology), before all the children have been created. Gen-

erally the widget writers thought that this phenomenon should be avoided. The problem

is that the Realize function always calls the Form Widget's internal Resize procedure. This

procedure packs the existing children of the Form Widget as close together as possible and

shrinks itself to the size of the minimum enclosing rectangle encompassing all its children.

This was unacceptable for a graph editor. To keep the Form Widget from calling this

procedure, the Form Widget was created before its children. These children include the

widgets that make up the menu and those List widgets that make up the nodes in the

Graph Editor.

The Form Widget has the ability to let its children set their location within the Form

Widget using the horizDistance and vertDistance resources. The Form Widget provides

these resource fields for each of its children. In the toolkit the children of interest are the

List Widgets. To set the location of each List Widget with respect to the top-left corner

of the Form Widget, the program must set the horizDistance and vertDistance as well as

the child widget's own x and y resource values. The x and horizDistance parameters and

likewise the y and vertDistance parameters must always be the same or the graph editor

does not behave correctly. The List Widget's other inherited resource values left., right, top

and bottom must be set to ChainLeft and ChainTop to insure that resizing the application

window does not change the nodes sizes, or their relative locations. Considerable time

was spent working through the Form Widget to get it to work the desired way.

Making movement work properly was also difficult. The movement function was broken

40

up into a three step process and functions called Start, MoveHosts, and Commit were

written. The X lib functions XGrabPointer and XQueryPointer were used to get the

pointer location and to return the window the mouse was clicked in. The MoveHosts

function can be modified to implement the shadowing of windows similar to the way of

Tom's Window Manager. The Commit function sets the window down in the new location.

These functions are called through callback routines set when the nodes are created. Also

Translation Tables and Action Tables are used to tie the mouse clicks to these functions.

There may be a way to use a widget like the poorly documented Grip Widget to do some

of the things that the X lib functions or the Translation or Action Tables do to connect

widget movement to mouse movement.

Variable Node Shapes

The Athena Widgets offer great potential to reset shapes and sizes. The sizes of the

widgets are dependent upon the font size and amount of the text, and the widget width

and height. The font can only be set in the fallback resources. The current font for the

nodes is a small, but readable, boldface-font. Reducing the font size reduces the size of

the widget. Another way to change the size of a widget is to set the width and height

parameters, called the internalWidth and internalHeight parameters in the List Widget.

These parameters can be set using the XtSetValues(widget, arglist, number) function once

the argument list is set up. This is outlined in Section 3.4.

Under X11R4, the widgets support the shape converters Xm.uShapeRoundedRectan-

gle, XmuShapeOval, and XmuShapeEllipse. Currently the toolkit implements rectangles,

rounded rectangles (with a ten-pixel rounded corner), ovals, and ellipses. No capability yet

exists within the Athena Widgets for drawing triangles, pentagons, hexagons, etc. How-

ever by resetting the widths and heights of widgets and by using these shape converters,

41

any rounded or rectangular shaped object can be made.

Setting Node Colors and Border Widths

The colors used in graphical interfaces are important for their user appeal. This ap-

plication insures that the foreground and background colors always contrast on nodes and

buttons. If they do not contrast well, displaying color graphics on a monochrome monitor

can be a problem. In the Athena Widget Set, the Command, Label and Toggle Widgets

are all written so the the foreground and background colors automatically maintain good

contrast. The graph editor currently uses three background colors, white, light-green

and red. It also uses two foreground colors in the nodes, blue for white and light-green

backgrounds, and white for red backgrounds. This provides an appealing contrast in color

graphics workstations and strong contrast on monochrome workstations. It is a very sim-

ple matter to expand the function ChangeColors in the file build.c to include a multitude of

other colors in the interface. These colors can be set on creation and changed on demand.

The Graph Editor also provides the user the capability of setting the border widths.

Currently the Graph Editor displays a node's border width as either one-pixel wide or

three-pixels wide. This is set by the application through series 206 messages to the toolkit

process. Currently the UW Dynamic Network Management System uses the variable

border widths to indicate whether the application is actively monitoring a node (wide

border) or not (narrow border). This gives the user yet another means to distinguish

nodes from one another.

Line Drawing

Another capability that my graph editor offers is the capability to draw and delete

lines. The application uses the 202 series messages to draw a line and the 203 series

messages to delete a line. It would be a simple matter to add variable line thicknesses

as well. The widgets redraw themselves when they become visible, though sometimes the

42

lines do not. The toolkit is written so that the lines redisplay themselves after a slight

delay when internal application windows are closed. Closing an occluding window external

to the toolkit, like an xterm window, will not send a redraw message to the lines, though

it does to the widgets in the toolkit.

Scrollbars

One last aspect of the Graph Editor is the ability to scroll so as to look at nodes that

are positioned off the screen. Normally the application will fill about eighty percent of the

screen in the X and the Y directions. However, by using a window manager like twm the

display can be resized to take up more or less of the screen. Sometimes using all of the

screen is not enough for large networks. The toolkit allows large networks to fill up more

than one screen, providing a horizontal and vertical scrollbar for the user to see sections

of the palette not normally visible.

This was implemented by putting the Form Widget into a Viewport Widget. The

Viewport Widget normally provides its child widget a scrolling capability to look at all

objects displayed in its workspace. The only way to insure that the Viewport Widget

always has the capability to scroll at least one screenful to the right and down was to use

the following code.

x = ((XWidthOfScreen(XtScreen(theForm))*2.0) -1);
y = ((XHeightOfScreen(XtScreen(theForm))* 2.0) -1);
XtSetArg(arg[0], XtNhorizDistance, x);
XtSetArg(arg[1], XtNvertDistance, y);
XtSetArg(arg[2], XtNborderWidth, 0);
XtCreateManagedWidget(" ", labelWidgetClass, theForm, arg,3);

The code appears in the main.c file inside the function SetScrollbarSize. It creates a

Label Widget that is positioned two screenfuls right and two screenfuls down on the Form

Widget. This Label Widget's border is invisible and the label is blank. This "Invisible

Widget" forces the scrolibars in the Viewport Widget to cover all the area from the origin

out to this widget. This method works very well though it's not an elegant method of

setting the scrollbars. I currently limit the scrolling capability to twice the screen size in

43

each direction. It is a simple matter to set the "Invisible Widget" farther over and down

allowing the toolkit to scroll over a much larger area.

4.2 The Menu Interface

The Menu Interface has several features that make the Graphics Toolkit easy to use.

First, the Main Menu deserves attention, as well as the ease of creating submenus and

popup windows to prompt the user. Second, the ability to point and click on buttons in

t .e prompts and on the nodes in the Graph Editor itself, the binding of the Return Key

to functions in the popup windows and the ease of typing in input at the prompt will be

discussed. Third, the General Purpose Popup Prompts deserve mention since they are a

means for the application program to get information from the user through the graphical

interface without changing the main menu. These features make the Menu Interface easy

to use.

The Main Menu

The Main Menu box currently has eight Command Widgets, or Command Buttons.

The menu box is designed to stretch nearly all the way across top of the visible part of

the palette when the program starts up. When activated with mouse clicks two sub-menu

boxes pop up. One menu box under Print Net List shows four options and Cancel and

the other menu box under Functions shows seven options and a Cancel button. These

pop dowii menus make it easy to add more menu options within the toolkit. Note that all

the boxes have explicit width and height parameters set with calls to XtSetArg. If buttons

were added to these boxes the size of these boxes would have to be increased. The other

buttons do the specific things that are stated on their labels: Load Net File; Save Net File;

Logging; Add Component; Delete Component, and Quit. All buttons except Quit prompt

for more specific information needed to pass along a complete message to the application

44

process. The button Logging is implemented as a Toggle widget with a special callback

routine added to prompt the user for a tie name when the user wishes to use a logging

process.

The Point and Click Interface

The Athena Command Widget allows users to invoke functions, called callback rou-

tines, by clicking on a button. This interface is not too hard to code.

Another technique uses the action table and the translation table to allow the user to

execute functions by clicking on other widgets. In the file popup.c several examples exist

where translation and action tab1 -7 are used to call another function using a mouse click.

In the function DeleteFromNetwork the following translation table is called:

char deleteTranslation[]="Btn2Up: OkDeleteAddress)";

Below is the code in DeleteFromNetwork that puts the translation action into each of the

desired widgets:

table = XtParseTranslationTable(deleteTranslation);
for (i = 0; i .lt. myobj.numhosts; i++){

XtOverrideTranslations(myobj.myptrs[i] - hosts, table);}

This example parses the translation table so that it can be input into the structures of

each of the desired widgets. The XtOverride Translations function adds the translation to

each of the widgets, replacing any other translation that may exist for Btn2Up. Another

translation table was loaded into each node when it was created tying the function GetAd-

dress to the Btn2Down key click. GetAddress sets the value of AddressOfInterest to be

the name of the node that the button was clicked down on. Callbacks and the translation

and action tables provide the point and click interface.

The Athena Widget Set provides a Dialog Widget that can be customized to take input

either from the keyboard or by clicking on Command Buttons. These Dialog Widgets are

used to prompt the user for the input the application needs. The Dialog Widgets are very

45

closely tied to the fallback resources where several parameters must be set. Typically the

fallback resource parameters for a Dialog Widget look like these:

"*addDialog*label.resizable: True",
"*addDialog.value: ",
"*addDialog.value.translations: #override \\ KeyReturn: OkGetName(",

The first line specifies that the text block where the user types the information for the

application should be able to grow, limited only by the size of the enclosing popup prompt

box. The second line makes the contents of the text input box initially blank. Not setting

the .value parameter for a Dialog Widget would give a popup prompt without a block to

insert text. Text blocks are not necessary for boolean prompts. Boolean prompts are most

effective when the dialog box displays only a "True" and a "False" button. The third line

traps the carriage return and calls the function OkGetName. This lets the user hit the

carriage return rather than typing in the value and clicking on the Ok button to proceed.

Generalized Popup Prompts

The interface also has some functions that enable the application process to have the

toolkit display customized prompts for input. It pops up a box in response to a 102 style

message from the interface with the text string of the message as the label, returning the

response in the form of a 101 style message. This gives the application a means to easily

query the user without the necessity of altering the toolkit's popup.c file. This is a very

important tool application programmers can use to shield themselves from the complexity

of the Athena Widgets. This capability also could form a starting point to develop an

interface that can be completely determined and set up by the application process that

defines its own menu titles on startup rather than modifying the popup.c file.

A User-Defined Title

One last feature of the toolkit is the ability of the user to display a title of his or her

choice just below the menu buttons. The title appears in twenty point boldface type and

46

is centered just below the menu buttons. The user has the capability to set this parameter

by creating a file called X.title in the toolkit's directory, in which the user specifies a string

which is read as the title of the application. If no file X.title is present, then the title is

left blank.

4.3 The Text Interface

The Text Interface is a feature that enables the application to pass information through

the toolkit to the user. The messages are displayed in an eighty-character wide text

window that scrolls to let the user see the most recent messages and provides the user

with a scrollbar to scan for messages that may have scrolled off the screen. The text

window comes up on top of the visible portion of the window in a bright yellow color so

the user does not miss the messages.

The text window employs two methods to close the window. One method allows the

application to directly close the window without the user taking any action at all and the

other method pops up a small close button that the user must click to close the window.

The most desirable way to close the window is almost certainly to require the user to close

it himself. This insures that critical messages are not missed. Currently the text window

pops up right on top of the Graph Editor and it cannot be moved to another location on

the screen. This can be a little inconvenient or distracting for users. It may be possible

to reimplement the text window as a separate application level process, putting it under

the control of the workstation's window manager.

4.4 The File Interface

The File Interface is a general interface that enables multiple processes to communicate

easily. It works well because of the small bandwidth needed to pass information between

47

the application process and the graphics process. It uses the file IO.output to pass messages

from the application to the graphical interface and the file IO.input to pass messages from

the graphical interface to the application. The interface currently has thirty-eight different

codes representing different types of messages. These codes are outlined in Appendix

A and detailed in Appendix B. Appendix A is the specific interface set up between the

Dynamic Network Management System and this toolkit. Appendix B contains the toolkit's

man pages. These thirty-eight codes are easily expandable without making the interface

significantly more complicated. Extra effort could be placed on making the 100 and 200

series interfaces larger to include features like an expanded shapes library, widths for

lines, and a greater numbers of colors. Extending the graphical interface would involve

expanding a case statement in file.c and supplementing or writing the relevant functions

in build.c.

Another aspect of this application is the ability of the user to add functions to be

checked on a periodic basis. The CheckFiles function in the file main.c shows a simple

way to use the XtAppAddTimeOut function to allow non-X functions to run continuously.

void CheckFiles(){
XtAppAddTimeOut(app -con, 100, CheckFiles, NULL);
CheckForInput(;
CheckForOutput();I

The function XtAppAddTimeOut, which was discussed in section 3.3, calls itself (since

it appears within CheckFiles) every 100 milliseconds passing along no other parameters.

Next it calls two functions defined in the toolkit, CheckForInput0 and CheckForOutputO .

These functions take and send information through the file system to enable the toolkit

to communicate with the application process. The XtAppAddTimeOut function allows

the X-server to give control to non-X processes. An implementation that directly adds

functions to the X-server could make the Toolkit more efficient.

Using a file interface has several significant advantages. First, with separate processes

the application is independent of the specific ADE used to display it. Second, the toolkit

48

can be developed and refined distinct from the application as long as the interface remains

the same. Third, the interface simplifies the applications development task since the

programmer is spared having to learn the details of some ADE.

4.5 The Data Structure and Naming Conventions

Understanding the toolkit's internal data structure and maintaining strict naming

conventions were very important in this toolkit's design and are important to keep in

mind as it is revised. Generally no data structure is required for Widget applications

since the widget tree and the internal resource variables of each widget provide sufficient

structure for typical applications. The hierarchical data structure for the nodes in this

toolkit's graph editor is required because there must be some means to identify nodes.

The file build.h details the data structure summarized below.

typedef struct {
Widget hosts;
List list;
Connection *link;
Place place;

} MyList;

The widget hosts is a List Widget which displays information from the XtNlist resource

variable. The location information as well as attributes like its shape, color, border width,

etc. are kept in internal variables of the widget. These variables are set and read through

argument lists created with XtSetArg calls, combined with the function calls XtSet Values

and XtGetValues with the argument list as a parameter.

The List structure is defined as:

49

typedef struct {
char nm[16];
char addr[16j;

} List;

This structure keeps the name and address information used by the functions in build.c

to compare names and addresses in the data structure. The address field must be distinct

for each node or the graphics process will produce unexpected results.

The Connection structure is defined below.

typedef struct connection {
char linkname[16j; /* actually is the internet number */
struct connection *next;

} Connection;

This structure is a linked list of other nodes that are adjacent to the current node. It

is implemented so that only the lexicographically smaller addressed connection keeps the

link. This minimizes the amount of time spent searching the list and drawing the lines.

The third data strt':ture is required so that the widget can access the information to

be displayed via the resource variable XtNlist:

typedef struct{
char *nm;
char *addr;
char *empty;

}Place;

The first two variables point back to the List Structure's nm and addr fields and the

third variable points to the string "NULL". This structure is assigned to XtNlist for each

instance of the List Widget.

The top level data structure is implemented as a record consisti-g of an array of Mylist

structures and a field that keeps an index of the last valid MyList location in the array.

It is very easy to write Athena Widget applications that virtually no one can un-

derstand. Athena Widget applications are written in C and, when the peculiarities of

C-like global variables is combined with the Athena Widget's esoteric function calls to

four different libraries, the code can get difficult. It was written with a lot of discipline in

50

naming the widgets and the callback functions. The Toolkit uses the convention that the

translation table name, the action table name, and the callback function name all be the

same. Additionally, the fallback resources make repeated reference to a variety of Dialog

Widgets. These Dialog Widgets are actually used across two or three functions, but refer

to the same widget. By naming them with care in each function it is easier follow the

source code.

4.6 Using the Toolkit

Application programs will need to use routines like those found in userStruc.c for the

file interface. This file consists of routines to allow the application programs to open

IO.output to write information to be displayed by the graphical interface, and IO.input

to read and reset this file which passes user requests to the application. Typically the

IO.input file must maintain a long function with one or more case statements that parses

and determines the nature of the user's request. This case statement should have the

capability to handle all applicable FmIO requests. Additionally, the relevant ToO calls

have to be added to the body of the application calling the function AddToMessageBuffer.

Generally these procedures are not difficult for the programmer to implement.

Application programs will have to use a data structure to maintain information to

pass to the graphics process. Sometimes the need to maintain this data structure can be

demanding. The UW Dynamic Network Management System saves the Graph Editor's

state continuously and writes it to a file when the user clicks on the Save Network button.

Of course the user can load the previously saved file with the Load Net File button.

The file records a number of different variables like the node name, address, type, x and

y coordinates, operational status and monitoring interval. Keeping a good continuously

updated data structure is an absolute requirement if applications are to have the capability

to save their state from session to session.

51

This toolkit is implemented in such a way that nodes are created or deleted only after

receiving a message from the application. The user adds components by clicking on the

Add Component button and responding to the necessary prompts. This information is

passed by the toolkit to the application via the file system. The application does validity

checks and returns a message to the toolkit via the file system to draw a component

providing the information to be displayed within the node and its location. This keeps

the toolkit general enough to be used for other types of applications. One case where

the application automatically deletes nodes from the screen is when the user requests the

Toolkit to load a network file and another network file exists on the display. In this case

the graph of the nodes on the display are deleted from the screen before the new file is

put up on the display.

4.7 The Suitability of the Widgets

Creating this toolkit did more than just provide a smooth interface for network man-

agement applications. It also validated the utility of the Widgets for other major appli-

cations. Some X-Windows experts have dismissed the X-Athena Widgets as not really

anything more than a complicated set of routines built to be used in simple applications

like xterm, xedit, xload, and xmh. There were serious questions of the need to continue

to develop the Widget Set if their only practical use was to make a handful of programs

somewhat easier. This application shows that the widgets can be used for serious interface

design.

Now that we can consider the Athena Widget Set and The X Toolkit Intrinsics to be

a serious ADE, the quality of this ADE should be assessed. I first asked if this ADE was

capable of doing everything required for my application. The ADE was unable to produce

any shapes other than rounded or rectangular ones. Other capabilities like reading the

mouse coordinates and drawing lines also had to be done using the X lib. The designers

52

admit that there are some things that must be done using the X lib. Thus this ADE fails

the test of being able to do everything that I required it to do without considering the X

lib as part of the system.

A second feature of any ADE is the quality of information available regarding its use.

The documentation that accompanies the release is clearly not adequate. However there

are a number of other sources of information about how to use the Widgets and Intrinsics.

The Source Code is available as well as the examples directory. Further there are a few

applications that have been written using the X toolkit, including xedit whirh is a screen

oriented editor. When all this information is added to the fact that a number of new

books are available that describe programming with the X toolkit including the O'Reilly

series[16, 18], there is now adequate information available.

A third issue is the ease of developing applications using the ADE. Here this ADE

fails to measure up. It can be very hard to do simple things like dynamically change

the background color of L"e widget. Further, the relationships between the widgets can

get muddled. Often, during applications development, trial and error is the only way

to determine which resource values should be changed to make an application behave as

desired. It is much easier to use this ADE than X lib, but it is still too hard to use this

ADE.

Finally, the quality of the ADE's implementation should be considered. I failed to find

any bugs in the implementation. The only hint of a quality problem was in the Intrinsics

warning cited in section 3.6. Part of the reason that I did not find any bugs may be

due to the incomplete documentation. I may have run across bugs and considered them

"features". Despite the warning I consider the implementation to be sufficiently bug-free

53

for most applications.

4.8 Sunmmary

This chapter introduced the Network Graphics Toolkit. The graph editor part of the

toolkit can display a large number of nodes and links using a small font size, and scrollbars

to overcome the limitation on the screen size. The menu interface allows a point and click

interface using translation tables and action tables to limit the amount of input that the

user must type when prompted. The text interface sends messages to users from the

application and includes a scrollbar so the user can reexamine any message that may

have scrolled off the screen. The file interface provides an effective means of insuring that

two Unix processes can communicate and is very easy to implement. Finally the data

structure and the naming conventions should facilitate maintenance and expansion of the

toolkit. The Athena Widget Set is not ideal; it is a capable, though somewhat basic ADE.

It is a good place to start writing graphical applications given the lack of more advanced

development environments.

The next chapter will put the work that has been done on the Network Graphics

Toolkit into perspective. Two 1 Jgrarns that use the toolkit will be discussed, and the

suitability of the Athena Widgets and the X Toolkit Intrinsics taken together as an ADE

will be assessed.

Chapter 5
Developing Applications with the Toolkit

The toolkit I developed using the Athena Widget Set has potential as a graphical

interface for a wide variety of network management applications. Two programs at the

University of Washington currently take advantage of it to display graphically their net-

work management programs. This chapter will examine both of these programs and

describe how they use it. It will also look at the application in a more general context,

considering other applications that can benefit from using all or part of the toolkit.

5.1 UW Dynamic Network Manager

The UW Dynamic Network Manager,[15] written by Walt Reissig, uses SNMP to

collect data for his program. It discovers the existence of hosts, routers and networks

and calls my program to display these nodes where his program indicates. The Dynamic

Network Manager uses nearly every aspect of my graphical interface. The nodes can be

either rectangle, rounded rectangle or ellipse shaped; the border widths can be either

narrow or wide; and the background colors of the nodes can be either red, white or green.

His program maintains the locations of the nodes as they are moved on the screen to

different positions. His program also directs my toolkit to add or delete nodes and links

in response to input received from the user via the toolkit's menu interface. This interface

55

was designed to be compatible with the capabilities of his program. Appendix A describes

all possible messages in the communications interface between our programs.

The use of my toolkit allowed Walt Reissig to concentrate on writing his application

rather than the graphical user interface. His concern was focused on giving his program

the greatest range of functions possible and less on how output was to be displayed. He

implemented a program that can discover systems adjacent to systems in his network;

that can monitor the operational status of nodes, and that can query a system for one or

more variables that are part of its SNMP database. Freeing him from the need to learn

the X lib or the Widgets and the Intrinsics gave him more time to concentrate on the

application itself.

5.2 Traceroute

Scott Murphy recently completed extending the public domain Tracetoute[26] program

to take advantage of the Network Graphics Toolkit. His program originally provided text

output that listed the route from the host computer to some remote host. The work that

he had to do to extend his program typifies the sort of work that users who wish to extend

non-graphical network management programs will have to do to give their programs a

graphics capability. He needed to develop an additional data structure to maintain the

links between the nodes as well as a structure to maintain the nodes. This was necessary

because he wanted to use the Load Net List and Save Network buttons to save and restore

the graph from session to session. The data structure also had to record the X and Y

coordinate locations of all nodes. To support the Logging button he implemented functions

to open, write to, and close a user-specified log file. He also implemented procedures to

add and remove nodes from his data structure in response to the toolkit's Add Component

and Delete Component buttons.

Murphy found that the ideal format for his program to get the name and the address of

56

nodes to trace was a little different than the toolkit's format. His program always begins

its route tracing from the host node, so that there was no value in clicking on the "from"

node as prompted by the toolkit's menu. Despite all the extra work, he is very satisfied

with the graphical interface of my toolkit. In the section on future directions for my work,

I will return to the issue of developing a method to let the user specify his own menu

interface.

Murphy's work validated the concept that non graphical programs can be given a

graphical interface without the application writer needing to begin using direct calls to

some ADE or the X lib. As a service, my toolkit provides the file interface that the

application writer needs (in the file userStruc.c). One interesting problem that Murphy

encountered was the fork procedure that first starts my process and then his process.

His application runs in kernel mode which is required for the Internet Control Message

Protocol (ICMP). It was not possible in the time available to come up with a means to

fork a process while in this mode. His implementation used separate xterm windows on

the same host, one for each process, to run his application's process with my graphical

process.

5.3 Separating the Graphics from the Application

Reissig's and my work make a strong case for the notion that a graphical programs

can be written that are independent of the graphical interface. This is significant in

that it makes application programs more transportable to other graphical ADEs as they

become available. Reissig's program could be easily implemented on a machine running

Motif, for example, as long as the functions in the toolkit were rewritten using Motif.

The notion of keeping the graphics distinct from the application gives the application a

lifespan beyond that of the interface for which it was developed. This is what writing

57

maintainable programs is all about.

5.4 Summary

This chapter has examined two different Network Management programs that were

written or modified to use the toolkit. The toolkit provided each of these programs

a good graphical interface and freed the applications programmer from having to get

involved in the details of the graphics. New graphical applications environments are being

developed that will add even better graphical capabilities for future programmers. These

two programs are able to make use of these new programs easily as long as the functions

in this toolkit are implemented by some future toolkit developer.

The next chapter will discuss several suggestions for future work using this toolkit as

the base. This toolkit was developed with network management applications in mind;

however, it can be exLended to support unrelated applications fairly easily.

Chapter 6
Discussion of Future Work

The previous chapters presented the Athena Widget Set/ X Toolkit Intrinsics ADE,

laid out the work done with it to create the Network Graphics Toolkit, and presented

some applications that use the toolkit. This work has shown limitations in both the ADE

and the toolkit that can motivate future research.

Stepping back from the specifics of the implementation for a moment it is clear that

two broad ideas emerge. First, it is possible to create programs that are independent

of the graphics that implements them. Development of more sophisticated toolkits can

make programming much more efficient than currently possible with even the best ADEs.

Second, a more efficient communications interface can replace the current file interface,

which links the graphics and the application.

There are many applications that can benefit from this work. This chapter will discuss

some non-network management applications and propose further work appropriate to make

the toolkit more adaptable.

6.1 Using the Toolkit for Other Types of Applications

The toolkit has potential in several non-network management related fields. The

source code of the toolkit as a whole represents an example of a large widget-based appli-

59

cation. Since there are few of these available this toolkit can be valuable for programmers

as an example of how to do certain things.

The graph editor portion of my application, where I set and move nodes around with

mouse clicks, could be ideal as part of a Computer Aided Design Tool. There is also

some interest in writing programs that use graphics to simplify existing programs. For

example, an automated makefile program might be developed that allowed a user to make

a dependency graph of a set of files and produce an efficient makefile. It could be developed

using a different menu system and functions from the toolkit's build.c file. Parts of the

toolkit could be used for writing a program that creates a graph of a user's subdirectories,

allowing the user to move between them by clicking on nodes representing subdirectories.

In general, my graph editor overcomes the problem of widgets automatically resizing

themselves to take up the smallest possible screen size by using the Form Widget which

is made visible before any widget children of the Form Widget are created. Graphical

simulation applications that are unrelated to Network Management could also be written

to use my graphics since my program does not care what is represented inside the nodes.

They would probably require a different set of menu buttons to be adequately supported.

6.2 Further Refinements With the Athena Widgets

This section describes possible improvements and refinements of my toolkit. The most

significant improvement could come in the area of how the menus are specified. As it

exists right now the user must modify the file popup.c in the toolkit to change the menu

interface. The toolkit does provide the means to pop up custom labels to get information

from the user. This is a start to providing a more adaptable menu interface.

One way to implement a dynamic menu interface is to have a library of callback

functions that can be tied to menu buttons. A new code sequence could be added to

the file interface, perhaps 301 - 0, so the application can specify menu buttons to be

60

displayed by the toolkit, and the corresponding callback routine to execute when the

button is pressed. This code sequence would be sent to the file IO.output for each menu

button on program startup to build an application specific menu. For example, the user

could send a message to create an Add Component button and specify a callback routine

from the existing library for it. Without the benefit of some Graphical User Interface

Design Editor this solution may be as good as the menu interface can get.

There are a number of possible refinements to the graphics in the toolkit. Other

colors could be easily added to the ChangeColors function. Also widths of links could

be added. For variable widths of the links an integer type value would have to be added

to the Connection structure in the file build.h. This integer value could be the width of

the link to draw. A "for-loop" in the Redisplay Lines function is all that would need

to be added to accomplish drawing the variable width lines. Extra shapes could also be

added. Squares and circles are possible without too much trouble and really adventurous

X lib programmers could develop more advanced shapes. The ability of the lines to

automatically refresh themselves when they become visible can also be implemented. As

a hint for doing this, widgets all have routines called Redisplay(that restore the widgets

when they are exposed. Finally, the latest release of the Athena Widgets fixed a problem

in earlier versions in that bitmaps can now actually be displayed as promised. Having

small bitmaps available to put up inside the graph editor would further improve the look

of the graph editor or the menu buttons.

The toolkit could also be implemented using some event management function other

than XtAppAdd TimeOut. This function may create a race condition with the X server,

causing machine performance to suffer. The file interface is also something that could

be revised. Reissig's approach for process communication is effective and universal, but

is very slow. Another system could be developed to do the job much better although

the operating system independence of the program might suffer somewhat. Developing a

standard communications interface protocol, perhaps by using operating system dependent

61

stubs like those used in the Remote Procedure Call methodology can provide an efficient

yet portable solution.

Several other less significant possible changes will now be mentioned. It would be ideal

to include the ability to show the user an outline of the widget that is being moved from

one point on the screen to another as long the user holds the mouse button down. It would

also be helpful if the text widget could be a separate application level window under the

control of the window manager. This would permit the widget to be resized, iconified,

and moved about the screen. It mi.ght also be of value to implement code that removes

all connections to a node when the node is deleted rather than asking the application to

do it. Implementing a StripChart Widget similar to the text widget that could monitor

one or more variable by clicking cii the node would be desirable. These refinements can

all be implemented using the Athena Widget Set.

6.3 Conclusion

This thesis began with a discussion of the need for graphics applications for network

management, making the point that these graphics programs are hard to write. Chapter

1 continued with a discussion of the objectives of this thesis. The objectives were to

develop a toolkit to ease the creation of graphical network management applications.

Other objectives were to evaluate a number of graphical programs and assess the utility

of the Widgets and the Intrinsics as an ADE.

Chapter 2 discussed several graphical programs that embed their graphics code within

the application. This was contrasted with the goal of my toolkit to provide the user with a

high-level graphical interface that freed him from having to include ADE or X lib specific

code in the application. Only calls to high level routines should be necessary.

Chapter 3 discussed important concepts in the X Toolkit Intrinsics and the Athena

Widget Set and provided a general evaluation of the Widget Set's capabilities and its ease

62

of programming. It is not an ideal ADE but it is far better than using the X lib.

Chapter 4 discussed the implementation of the toolkit using the Athena Widget Set

and the X Toolkit Intrinsics. The toolkit has several major aspects. The graph editor

takes up most of the screen space of the application. It gives the user the ability to

reposition nodes on the display and uses variable color, shape and border width to provide

information about the nodes. The menu interface allows the user to query the application,

assigning it tasks to complete. The text interface allows the application to pass important

information back to the user. The file interface enables communication between the active

user application and the graphical interface. Finally, the internal data structure and

naming rules help insure that the graphical interface and the user application are consistent

and that the toolkit source code is as clear as possible.

Chapter 5 highlighted two programs that use the toolkit. They demonstrate its utility

though the graphics code is separate from the application code.

Further work needs to be done to refine this notion of keeping the graphical interface

code distinct from the applications code. The toolkit takes away from the applications

programmer the complete control over the screen and the application. The programmer is

given the right to choose from the available shapes, colors and border widths to display the

information relevant to the application. It offers ease of building an application and the

promise that the application can be moved to different ADEs as the technology continues

to progress.

This work can be continued in conjunction with the development of a formal commu-

nications interface. This interface can provide smooth communication between processes

without using visible files with permissive access controls.

Bibliography

[1] James Gettys, Robert W. Scheiffler, and Ron Newman, X lib - C Language X Interface,

MIT X Consortium Standard, X Version 11, Release 4, 1988.

[2] Chris D. Peterson, Athena Widget Set - C Language Interface, X Window System,

X Version 11, Release 4, 1989.

[3] Robert W. Scheffler, X Window System Protocol, X Version 11, Release 4, 1988.

[4] Dan Heller, "X View Programming Manual, An OpenLook Toolkit for X11",

Definitive Guide to the X WIndow System, Vol 7, O'Reilly and Associates Inc, Sebastapol,

Ca, 1990.

[5] Pamela Rockwell, "OSF/Motif Graphical User Interface", Datapro Reports on UNIX

Systems and Software, Datapro Research, Delran NJ, May 1990.

[6] Joel McCormack, Paul Asente, and Ralph R. Swick, X Toolkit Intrinsics - C Language

Interface, X Window System, X Version 11 Release 4, 1988.

[7] M. Fedor, et al., SNMP Network Management Station (NMS) and Agent

Implementation Version 4.0, NYSERNet Inc, 1989.

64

[81 David Martin, "MIT Network Simulator User's Manual", updated by Hellmut

Golde, Department of Computer Science and Engineering, University of Washington, 1989.

[9] Walter C. Reissig, "Dynamic Network Management Using the Simple Network

Management Protocol (SNMP)", Masters Degree Thesis, Department of Computer Sci-

ence and Engineering, University of Washington, 1990.

[10] Scott Murphy, "XTraceroute", Senior Project, Department of Computer Science

and Engineering, University of Washington, 1990.

[11] Chris D. Peterson, Xmu Library, X Window System, X Version 11, Release 4, 1989.

[12] Alan Southerton, "Many Paths to X Window Programming", UnixWorld, Vol 7,

No 5, May 1990, p. 83-87.

[13] David Rosenthal, "A Simple Xl Client Program -or- How hard can it really be

to write 'Hello World'?", USENIX Winter Conference, Feb 9-12, 1988, Dallas, p. 229-242.

[14] David Simpson, "Ys and Zs of the X Window System", Systems Integration, Vol.

23, No. 3, March 1990, p 37-42.

[15] Peter D. Varhol, "Creating Graphical Interfaces For Unix", Personal Workstation,

April 1990, p 88-92.

[16] Adrian Nye, "X lib Programming Manual for Version 11", The Definitive Guides

to the X Window System, O'Reilly and Associates Inc, Sebastopol, Ca, 1988.

65

[17] Robert W. Scheiffler, James Gettys and Ron Neuman, X Window System C Library

and Protocol Reference, Digital Press, Bedford, Mass, 1988.

[18] Adrian Nye, "The X Window System Protocol", UnixWorld, Vol. 6, No. 9,

September 1989, p 105-113.

[19] Eliezer Kantorowitz and Oded Sudarsky,"The Adaptable User Interface",

Communications of the ACM, Vloume 32, Number 11, November 1989, p. 1352-1358.

[20] Howard Baldwin, "Building Products on X", UnixWorld, Vol 7 No 5, May 1990,

p 88-95.

[21] Tom LaStrange,"twm", Unix Programmers Manual, BSD 4.3, Evans and Souther-

land, 1988.

[22] R. Stine ed., "A Draft Network Management Too! Catalog: Tools for Monitoring

and Debugging TCP/IP Internets and Interconnected Devices", SPARTA Inc., January

1990.

[23] Tony Hoeber, "The OpenLook Graphical User Interface", Datapro Reports on

UNIX Systems and Software, Datapro Research, Delran NJ, May 1990.

[24] Steven Mikes, X Window System Technical Reference, Addison Wesley, Reading,

Mass, 1990.

[25] Andrew S. Tannenbaum, Computer Networks, Prentice Hall, Englewood Cliffs,

66

New Jersey, Second Edition, 1988.

[26] Van Jacobsen, "Traceroute", University of California, Berkeley, 1988.

Appendix A
The Communications Interface

Type GrlntfcePgm File App Pgm
FmlO: 10 (X) to 10.input to I0mgr
ToJO: 1O (X) from IO.output from IOmgr

Types Comments
char ipaddr[16]; node address or LAN
char nametype[33]; node or file name
char commid[16]; community name
char mstring[80]; general use string

Dir Vall Val2 Other Information

FmIO 1 - 0 nametype
filename

Load a file

FmIO 2 - 0 nametype
filename

Save network to file

FmIO 3- 1
Print all nodes summary info

FmIO 3- 2
Print all links summary info

FmIO 3-3
Print all LANs summary info

FmIO 4 - 0 nametype
filename if turning on

Turn logfile on/off

68

Dir Vall Va12 Other Information
FmIO 5 - 0 ipaddr, nametype, commid

address, name, community
Add a component

FmIO 6 - 0 ipaddr
address

Delete a component

FmIO 7 - 1 ipaddr, nametype, ipaddr, mstr
address, name, comm, MIBVar

MIB variable query of a node

FmIO 7 - 2 ipaddr, nametype, ipaddr, mstr
address, name, comm, MIBCat

MIB Category query of a node

FmIO 7 - 3 ipaddr, int
address, interval
(interval 0 is off)

Turn Performance Monitoring on/off

FmIO 7 - 4 ipaddr
address

Check Operational Status of a Node.

FmIO 7 - 5 ipaddr, mstring
address, performance type

Analyze Performance.

FmIO 7 - 6 ipaddr, mstring, mstring
Requires: address to map
'm' to map 'c' to confirm

add only? "snmp" or any"l

Map or Confirm Neighbors.

FmIO 7- 7 ipaddr,nmtype,addr,nm,comm,int
Requires: address of start
nmtype- none always returned
address and name of end
community of end
Add to network - l=Yes, 0=No

Trace a Path between nodes.

FmIO 8-0
Quit the program.

69

Dir Vail VaI2 Other Information
FmIO 0 - 1 ipaddr, int, int

addr, xcoord, ycoord

Move a node.

FmIO 0 -2 ipaddr, int, int
addr, xcoord, xcoord

Move a LAN.

FmIO 101 - 1 mstring
string data

Send reply to 102 type msg.

FmIO 101 - 2 int
integer

Send a reply to 102 type msg.

ToIO 102 - 1 mstring
string

Send msg to Screen, awaiting string reply.

ToIO 102 -2 mstring
string

Send msg to Screen, awaiting integer reply.

TolO 102 -3 mstring
string data

Send msg to screen, reply 0='N', 1='Y'.

ToIO 201- 1 addr,nm,int,int,int,int
addr, nm, snmp, oper, x, y

Draw gateway.

TolO 201 - 2 addr,nm,int,int,int,int
addr, nm, snmp, oper, x, y

Draw router.

ToIO 201- 3 addr,nm ,int ,int ,int,int
addr, nm, snmp, oper, x, y

Draw host.

TolO 201 - 4 addr,nm,int,int int,int
addr, nm, snmp, oper, x, y

Draw LAN,

70

Dir Vall Val2 Other Information
ToIO 202 - 1 ipaddr, ipaddr

addrl, addr2
Draw connection.

ToIO 203 - 1 ipaddr
address

Undraw Gateway, Router or Host.

ToLO 203 - 4 ipaddr
address

Undraw LAN.

TolO 204 - 1 ipaddr, ipaddr
addrl, addr2

Undraw Connection

TolO 205 - 1 ipaddr, int, int
addr, snmp, oper

Reset the Color

TolO 206 - 1 ipaddr, int
addresss,
type - 1 =gtwy, 2=router, 3=host

Make the Border Thick.

ToIO 206 - 2 ipaddr int
address,
type - 1=gtwy, 2=router, 3=host

Make the Border Normal Width.

ToIO 210 - 1 int
number lines

Open Text Display Box.

ToIO 210 - 2

Close Text Display Box.

ToIO 210 - 3 mstring

string data
Add to Text Display Box.

ToIO 210 - 4
Put "close" button in Text Box.

Appendix B
The Man Pages

NAME

U. W. Network Graphics Toolkit

SYNOPSIS

Xio

Xio -d -f -1 -m -p -t

DESCRIPTION

Xio starts up a process that creates a window which provides a point and click interface
for network management applications to use. The current popup menu is sufficient
for most general purpose network management applications including performance
monitoring, simulation network discovery and node-status with little or no
modification. The Network Graphics Toolkit consists of a series of routines that
uses the X-Athena Widgets and the X-Library to create and display hosts and
their connections in a consistant high-quality manner.

Network Graphics Toolkit takes input from an application program that it is
animating. It allows the application program to set node locations, colors of the
nodes, border widths of the nodes, shapes of the nodes and to display the node
connections easily. The application program can also send warning messages to the
user using both general popup windows or moderately large text windows to get
the users attention. Further the Xio program is designed to act as a Graphical
User Interface with mouse clicks and keyboard input changing the screen
parameters and passing back instructions to an application process. The
instructions for an application program are passed to the system through a mouse
driven menu interface and a mouse-driven click-and-drag interface to move nodes
around to different screen locations. The mouse driven interface currently uses
eight main-level buttons, though expandable to more buttons. Some of these menu
buttons open up to display nested menu buttons under these main menu buttons.

The Network Graphics Toolkit includes the capability to have the application pop
up additional menus to exchange information between the user and the application
process. These General Purpose Popup Windows have customizable labels and
allow the user to input with the keyboard or click with the mouse to communicate
with the application process. The Network Graphics Toolkit also uses scrollbars to
allow the user to examine networks that may be much larger than what could be
comfortably put on one screenful of a workstation.

72

The Source Code provides examples of how to write other procedures for different
menu boxes and popup prompts. The program might be started on a Unix
machine by forking off a process from the user's application program that
initializes the interface and sets up the menu boxes. If the process that forks off
the Xio process also specifies one of the flags above, for example, '-d' the window
that starts up the application program gets debugging information. In general each
start up option provides a different type of debugging information.

OPTIONS

-d Provides standard debugging information specifically related to the files
main.c and build.c and includes the operations that manipulate the data
structure that holds the widgets.

-p Provides debugging information relating to the UW Dynamic Management
Application menu interface. The Menu Button and Popup Window activities
can be easily monitored with this flag set.

-t Provides debugging information for the text window interface.

-m Provides debugging information pertaining to the movement of the nodes
with the pointing device.

-1 Provides debugging information pertaining to the line drawing and line erasing
features of the program.

-f Provides debugging information about the file system interface.

The large title that appears centered below the menu buttons can be set by creating a
file called X.title and putting the desired title in that file. On program start-up the
program reads the string found in this file and displays the string while the
Network Interface is running. Currently this string is not resettable during the life
of the process.

The Graphical Toolkit communicates with the network management application
process through the Communications Interface. The Communications Interface
consists of the files IO.input and IO.output. The code phrase FmIO means that the
user application is getting input from the toolkit. This happens through the file
IO.input, and the messages generally are requests for services. The phrase ToIO
means the file IO.output is the conduit for messages from the application to the
graphical interface and are usually requests for the application to display
something.

IO.input and IO.output must be pre-existing before starting the Xio process and
have both the 'read' and 'write' permissions set. To allow others to run
applications out of your directory on a Unix based system, these files must have
group and/or world permissions 'read' and 'write' permissions set.

FmIO: Xio through IO.input to Application.
ToIO: Application through IO.output to Xio.

73

Types Comments

char ipaddr[161; node address or LAN
char nametype[33]; node or file name
char commid[16]; community name
char mstring[80]; general use string

Dir Vall Val2 Other Information

FmIO 1 -0 nametype

filename
Tells the Application to Load the specified file,

clears the palette of any displayed nodes, and
initializes the data structure that maintains the
nodes while they are on the screen. Activated by

clicking on the Load Net File button and
typing a filename. If the file exists, the
application sends 201 and 202 series messages
in reply.

FmIO 2-0 nametype

filename
Tells the Application to Save the Network on the
palette to a specified file. Activated by clicking
on the Save Network button and typing a
filename. Application does not reply.

74

Dir Vall Vd!2 Other Information

FmIO 3- 1
Print all node summary info in the text window.
Activated by clicking on the Print Net List
button then on the ... nodes button on the
box that pops up. Application sends several 210

series messages to the display.

FmIO 3-2
Print all link summary information. Activated by
clicking on the Print Net List button then
on the ... Links button on the next box. The
application uses several 210 messages to send back

the information.

FmIO 3-3
Print all LAN summary information. Activated by
clicking on the Print Net List button

then on the ... LANs button on the next box.
The application uses several 210 messages to return
the information to the display.

FmIO 4-0 nametype

file if turning on
Turn logfile on/off. Activated by clicking on
the Logging button and typing in the filename.
Application does not reply, instead the interface
uses a toggle widget which shows reverse video
when a log file is on.

FmIO 5-0 ipaddr, nmtype, commid

address, name, comm
Clicking on the Add Component button and typing
in the above information at the prompts sends the
message to the application. The application responds
by returning 201 and 202 series messages if the node
is valid.

75

Dir Vall Val2 Other Information

FmIO 6-0 ipaddr
address

Delete a Node. Activated by clicking on the Delete
Component button and then by obeying the prompt to
click on the node to delete with the second pointer
button. The application responds by first deleting all
connections to the node then by deleting the node.

FmIO 7- 1 ipaddr, ipaddr, mstr
addr, comm, MIBVar

MIB Variable query of a node. This message is sent
when the functions button,then theQuery an

SNMP Variable button is clicked, then the other
information is typed in at the prompts. The
application replies with a series of 210 messages.

FmIO 7 - 2 ipaddr, ipaddr, mstr
addr, comm, MIBCat

MIB Category query of a node. This message is sent
when the functions button,then theQuery an
SNMP Category button is clicked, then the other
information is typed in at the prompts. The UW
Dynamic Management Application replies with
several 210 messages.

FmIO 7 - 3 ipaddr, int
address, interval

Turn Performance Monitoring on/off. This message
is sent when the Turn Monitor on/off button is
clicked within the Functions menu. The
interval value 0 is off. The application
will send a 206 message if the 'Is Monitoring?'
status changes between on and off, and will send a
205 message if the operational status is different.
The 205 message will be sent as long as 'Is Monitoring?'
is on and the operational status changes.

FmIO 7 -4 ipaddr
address

Check Operational Status of a Node. This is a one-time
one-time check of the operational status of a node.
A series of 210 messages and if necessary a 205 message
is sent in reply by the application.

76

Dir Vall Val2 Other Information

FmIO 7 - 5 ipaddr, mstring

address, performance type
Analyze Performance. Not Implemented.

FmIO 7- 6 ipaddr, mstring, mstring

address, Map?, SNMP?
Map or Confirm Neighbors. This is implemented by
clicking on the Map or Unmap a Node button and
clicking on the node of interest and the other
buttons in the series of prompts. As implemented in
the UW Dynamic Management Application it maps
nodes adjacent to the node of interest or confirms
their neighbors. Usually a series of 210
messages are also returned. For Map the interface
returns 'm' to map 'c' to confirm. For SNMP the
values are "snmp" or "any".

FmIO 7 - 7 ipaddr, nmtype, ipaddr,

nmtype, commid, int
addr, name, addr,
name, community, Add?

Trace a Path between nodes. Implemented by
clicking on the Trace a Path Between Nodes
button and then on the start node, and typing in the
end node information. It can add nodes to the graph,
but is implemented in the UW Dynamic Management
Application by returning the information to the user
via a series of 210 messages. The community is the
community ID for the end node. Add is a C boolean
type value. The first nmtype value always is none.

FmIO 8-0

Quit the program. Sends ti s message, then the
process terminates.

FmIO 0- 1 ipaddr, int, int

addr, xcoord, ycoord
Move a node. This message sends the new X and Y
coordinate location of the upper-left edge of the node.
This keeps the location of the nodes on the screen
consistant with the location of the nodes in the
application.

77

Dir Vail Vai2 Other Information

FmIO 0- 2 ipaddr, int, int

addr, xcoord, xcoord
Move a LAN. This message sends the new X and Y
coordinate location of the upper-left edge of the
enclosing rectangle of the LAN. The application and
the screen will always have the same LAN locations.

FmIO 101 - 1 mstring

string data
Send a string reply to 102 type msg. This tells
the user that the string came from the general
popup prompt it sent earlier.

FmIO 101 -2 int

integer
Send a reply to 102 type msg. Both boolean and
integer values can be represented with this msg.

ToIO 102 - 1 mstring
string

Send mnsg to Screen, awaiting string reply. Th!
creates a popup prompt with the string as the lab-!
and a window for the user to type in the information
requested. iThe popup window is normally positioned
nearly centered in the application window. The
user's reply is returned using a 101-1 message.

ToIO 102 - 2 mstring
string data

Send msg to Screen, awaiting integer reply. This
creates a centered popup window with the string as
the label for the popup window and a section for
the user to type in a integer value. The reply is
returned to the application using a 101-2 n,-ssage.

TolO 102 - 3 rnstring
string data

Send msg to screen, repl, 0--'No', I='Yes'. This
creates a centered popu i, window with the string as
the label for the p)Opup window and two buttons for
the user to click as the reply. The reply is
returned to the application using a 101- 2 message.

78

Dir Vall Va12 Other Information

ToIO 201- 1 ipaddr,nmtype,int,int,int,int
addr, name, snmp, oper, x, y

Draw gateway. This information is used by the
interface to draw a rectangular box with the 'addr'
and 'name' strings inside. If snmp=O it's white.

If it's operational (oper= 1) its green, else it's
red (oper = 0). On a monochrome monitor red is
reverse video. The y and x values are the pixel
values to offset the nodes from the upper-left
corner. The palette is larger than the screen and
has scrollbars so that integers larger than the
dimensions of the screen are acceptable parameters

for x and y. Negative numbers are not acccptablc
values for x and y as currently implemented.

ToIO 201 - 2 ipaddr,nmtype,int,int,int,int

addr, name, snmp, oper, x, y
Draw router. Currently this is implemented
identically as the 201-1 message.

ToIO 201- 3 ipaddr,nmtype,int,int,int,int

addr, name, snmp, oper, x, y
Draw host. The parameters are implemented
the same as in the 201-1 message. The
function implements a rounded rectangle as
the shape for these host objects.

ToIO 201 - 4 ipaddr,nmtype,int,int,int,int

addr, name, snmp, oper, x, y
Draw LAN. The parameters are implemented
the same as in the 201-1 message. The
shape is converted to an ellipse with the

horizontal axis elongated.

ToIO 202 - 1 ipaddr. ipaddr

addrl, addr2
Draw connection. This draws a single-pixel
wide line between two 201 type objects. The
lines are drawn on the palette itself a.pd
always appear under the nodes.

79

Dir Vall Val2 Other Information

ToIO 203 - 1 ipaddr

address
Undraw Gateway, Router or Host. This message
deletes the node. Currently it is important
to delete all links to the node before

deleting the node.

TolO 203 - 4 ipaddr
address

Undraw LAN. This message deletes the LAN.

Currently it is impoitant to delete all the
connections before deleting the node.

ToIO 204- 1 ipaddr, ipaddr
addrl, addr2

Undraw Connection. Deletes the connection

between the nodes.

TolO 205 - 1 ipaddr, int, int
addr, snmp, oper

Reset the Color. It does not directly change
the node color to what the user specifies,
instead it sets it through the integer parameters.
snmp=0 - white, oper=0 - red, and oper=1 - green.

Other colors can be set or added by modifying the
SetColors function in build.c using the integer
parameters to encode the extra information to
use these colors.

TolO 206 - 1 ipaddr, int
addresss, type

Make the Border Thick. This is used in the
UW Dynamic Management Application to specify
that a node is being monitored, though other
uses in other aplications are possible. The
border width is set from one-pixel to
three-pixels with this call. The integer value
'type' is necessary since the objects must be

restored to rectangular shapes before the border
width can be altered, once the border is widened

their shape is restored. Type values are 1 (gtwy),
2 (router)both square, 3 (host) rounded rectangle,
4 (LAN) ellipse.

80

Dir Vall Val2 Other Information

TolO 206 - 2 ipaddr int
address, type

Make the Border Normal Width. This restores the
border width on the nodes back to one-pixel.
Type values are same as in 206-1.

ToIO 210 - 1 int
number lines

Open Text Display Box. This pops up a yellow text
box that is about eighty characters wide with a
vertical scrollbar just above the bottom of the
application window. The height of the box is set
to be approximately the number of lines of the
integer parameter passed in. The application must
insure only one window is open at a time.

ToIO 210 - 2
Close Text Display Box. This closes the text box
without warning the user. Currently using the
210-4 closing technique is more common.

ToIO 210 - 3 mstring

string data
Add to Text Display Box. This adds one line of
text at the index position of the text window.
Thus the text is appended to the tail of any text
already displayed and the text is scrolled upward
as new lines are added.

ToIO 210 - 4
Put "close" button in Text Display Box. This
lets the user decide when to close the text window
once the application finishes sending information
to the screen.

The application process that takes advantage of this graphical interface has to be able
to work within this communications interface. Typically the programmer will have
to write a set of procedures that open read and write the files. When the file has
been read the application jijarks the file as read. In this implementation this is
accompuished by making the first entry in each file be the number of valid entries
in the file. As one process writes messages into the open file it writes the number
of valid messages in the file in the first line. Once the receiving process reads the

81

file it resets the rnumber of valid messages in the file back to zero. The file file.c
shows a number of these reading and writing procedures. The communications
interface is expandable and may include a nuimber nf other rossible messages. Thp
possibilities are limited only by the imagination of the application writer and his
interest in writing graphical routines that do what he desires.

To use the Graphical Toolkit the programmer will have to write a procedure that
processes the FmIO messages coming from the IO.input file and calls the correct
routines to handle each of these messages. Also the application will need to have
calls to a file handling routine that writes the appropriate messages and strings to
the IO.output file in accordance with the ToIO messagos.

Appendix C
Summary of the Widget Set

Fundamental Widgets

Core Widget - The source code available in the Intrinsics. This is the widget that all

other widgets are subclassed from.

Shell Widget - The source code is available in the Intrinsics. This widget forms the

root of the tree. It is created by the XtApplnitialize X toolkit call.

Template Widget - This is the standard form to use for subclassing widgets. This

widget has no representation its only use is as the starting point to edit from to create

your own widgets.

Simple Widgets

Command Widget - This widget shows a label that when the left button of the mouse

is pressed upon it. It also reverses its foreground and background colors momentarily to

show it has been activated. The programmer specifies a callback routine to be executed

upon activation.

83

Grip Widget - It is defined to be a small rectangular region in which events like But-

ton Press can be handled. Can be used as an attachment point to reposition an object.

Label Widget - This widget shows a label on the screen. No callback routine can be

attached to it and it will not change color when the mouse is clicked on it.

List Widget - Allows the display of multiple lines of text. Has the capability to allow

each line to become active (acting like a separate Command Widget).

Scrollbar Widget - This widget is used with the mouse to move scroll around in win-

dows. They are frequently add-on features for the composite widgets defined below.

Simple Widget - This is the common superclass of the other Simple Athena Widgets.

It has no representation on its own but adds to them all variables that set their sensitivity

state and cursor shape.

StripChart Widget - This widget provides a real time graphical chart of a single

value. It reads data from an application and updates the chart at a specified interval.

Toggle Widget - This widget is much like a Command Widget except that it does

not restore the foreground and background colors that are switched with each activation

of the toggle. It maintains boolean state for the application.

Menu Widgets

Sme - Simple Menu Entry object, is the base class of objects from which the menus

are built. It defines no visible label.

84

SmeBSB -This menu entry object provides a selectable label. It also allows a bitmap

to be placed in the margins.

SmeLine -This provides an unselectable line that can be used to separate menu en-

tries.

SimpleMenu Widget - This widget is a container for menu entries. It is created with

the XtCreatePopupShell function call.

Menu Button Widget - The Menu Button Widget is like the Command Widget in

that its border is highlighted as the mouse moves over the window and it momentarily

changes colors when activated. It is used inside the Simple Menu Widget.

Popup Widget - The source code for this is provided in the X Toolkit Intrinsics sec-

tion. It provides a temporary shell that any widget can use for menus, text display, etc.

It has no graphical representation.

Text Widgets

AsciiText Widget - This Widget provides a standard ascii text based screen editor.

This is meant to be a polished implementation usable without changes.

AsciiSrc Object - This provides a link to a file or string so that this data can be read

into a structure for display on the screen.

AsciiSink Object - This object allows for information in the structure to be rendered

85

on the screen.

Text Widget - This is the parent widget of the AsciiText Widget. It is meant to be

subclassed for specific editing applications.

TextSrc Object - This is the root object for all text sources.

TextSink Object -This is the root for all text sinks. Any new sinks should be sub-

classed from this one.

Conposite and Constraint Widgets

Box Widget - This widget acts as the container for other widgets. It will always pack

its children as tightly as possible into non-overlapping row.

Dialog Widget - This is used for getting input from the user. It includes an optional

text input widget and has method to add button and callback routines.

Form Widget - This layout widget lets the children specify their positions relative to

each other or to the edge of the Form Widget.

Paned Widget - This allows children to be tiled horizontally or vertically, similar to

the panes in a window. The user can dynamically resize the individual panes.

Viewport Widget - This consists of a frame with one or two scrollbars and an inner

window. Applications larger than the current use scrollbars.

Appendix D
Examples of the Toolkit's Graphics

LeOd ML File Saw Network Iprint Not ListI Loenn 1add Com.poent I 0.1st. Canponw*, FunctiswQut

DYE Dynamic Network Xanagmnt system

-. US .s1

2in.U 145

U~~u.in. 2 a. L W2

87

Load Net File Save Netwaork Pit $let ListLtogginf JMd Cowpoent Ieee Cnp Que~ry an SNHP variabe

Queryi an 51W catecora
This is user defined with X title Thr intrOn/Off

hek peaional Stalus

flap or Unnap a Node

Cck 2nd giA.Lan an Node to hap
Cancel

553. 555. 55 5

13459.799. 18

IMA. 69.9~ 11222.233344

IThis is the text display box.

